ausblenden:
Schlagwörter:
Computer Science, Computer Vision and Pattern Recognition, cs.CV
Zusammenfassung:
Over the last two decades we have witnessed strong progress on modeling
visual object classes, scenes and attributes that have significantly
contributed to automated image understanding. On the other hand, surprisingly
little progress has been made on incorporating a spatial representation and
reasoning in the inference process. In this work, we propose a pooling
interpretation of spatial relations and show how it improves image retrieval
and annotations tasks involving spatial language. Due to the complexity of the
spatial language, we argue for a learning-based approach that acquires a
representation of spatial relations by learning parameters of the pooling
operator. We show improvements on previous work on two datasets and two
different tasks as well as provide additional insights on a new dataset with an
explicit focus on spatial relations.