Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Context similarity scoring improves protein sequence alignments in the midnight zone.

Meier, A., & Söding, J. (2015). Context similarity scoring improves protein sequence alignments in the midnight zone. Bioinformatics, 31(5), 674-681. doi:10.1093/bioinformatics/btu697.

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
2077417.pdf (Verlagsversion), 294KB
 
Datei-Permalink:
-
Name:
2077417.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Eingeschränkt (UNKNOWN id 303; )
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-
:
2077417_Suppl.zip (Ergänzendes Material), 547KB
Name:
2077417_Suppl.zip
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/zip / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Meier, A., Autor
Söding, J.1, Autor           
Affiliations:
1Research Group of Computational Biology, MPI for Biophysical Chemistry, Max Planck Society, ou_1933286              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Motivation: High-quality protein sequence alignments are essential for a number of downstream applications such as template-based protein structure prediction. In addition to the similarity score between sequence profile columns, many current profile–profile alignment tools use extra terms that compare 1D-structural properties such as secondary structure and solvent accessibility, which are predicted from short profile windows around each sequence position. Such scores add non-redundant information by evaluating the conservation of local patterns of hydrophobicity and other amino acid properties and thus exploiting correlations between profile columns. Results: Here, instead of predicting and comparing known 1D properties, we follow an agnostic approach. We learn in an unsupervised fashion a set of maximally conserved patterns represented by 13-residue sequence profiles, without the need to know the cause of the conservation of these patterns. We use a maximum likelihood approach to train a set of 32 such profiles that can best represent patterns conserved within pairs of remotely homologs, structurally aligned training profiles. We include the new context score into our Hmm-Hmm alignment tool hhsearch and improve especially the quality of difficult alignments significantly. CONCLUSION: The context similarity score improves the quality of homology models and other methods that depend on accurate pairwise alignments.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2014-10-222015-03-01
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1093/bioinformatics/btu697
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Bioinformatics
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 31 (5) Artikelnummer: - Start- / Endseite: 674 - 681 Identifikator: -