Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Stochastic climate theory and modeling

Franzke, C., O'Kane, T. J., Berner, J. B., Williams, P. D., & Lucarini, V. (2015). Stochastic climate theory and modeling. WIREs Climate Change, 6(1), 63-78. doi:10.1002/wcc.318.

Item is

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Franzke, Christian1, Autor           
O'Kane, Terence J., Autor
Berner, Judith Berner, Autor
Williams, Paul D. , Autor
Lucarini, Valerio2, Autor           
Affiliations:
1The CliSAP Cluster of Excellence, External Organizations, ou_1832285              
2A 1 - Climate Variability and Predictability, Research Area A: Climate Dynamics and Variability, The CliSAP Cluster of Excellence, External Organizations, ou_1863478              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Stochastic methods are a crucial area in contemporary climate research and are increasingly being used in comprehensive weather and climate prediction models as well as reduced order climate models. Stochastic methods are used as subgrid-scale parameterizations (SSPs) as well as for model error representation, uncertainty quantification, data assimilation, and ensemble prediction. The need to use stochastic approaches in weather and climate models arises because we still cannot resolve all necessary processes and scales in comprehensive numerical weather and climate prediction models. In many practical applications one is mainly interested in the largest and potentially predictable scales and not necessarily in the small and fast scales. For instance, reduced order models can simulate and predict large-scale modes. Statistical mechanics and dynamical systems theory suggest that in reduced order models the impact of unresolved degrees of freedom can be represented by suitable combinations of deterministic and stochastic components and non-Markovian (memory) terms. Stochastic approaches in numerical weather and climate prediction models also lead to the reduction of model biases. Hence, there is a clear need for systematic stochastic approaches in weather and climate modeling. In this review, we present evidence for stochastic effects in laboratory experiments. Then we provide an overview of stochastic climate theory from an applied mathematics perspective. We also survey the current use of stochastic methods in comprehensive weather and climate prediction models and show that stochastic parameterizations have the potential to remedy many of the current biases in these comprehensive models.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 20142015
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1002/wcc.318
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: WIREs Climate Change
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Malden, MA : Wiley-Blackwell
Seiten: - Band / Heft: 6 (1) Artikelnummer: - Start- / Endseite: 63 - 78 Identifikator: ISSN: 1757-7799