English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Structure of the anchor-domain of myristoylated and non-myristoylated HIV-1 Nef protein

Geyer, M., Munte, C. E., Schorr, J., Kellner, R., & Kalbitzer, H. R. (1999). Structure of the anchor-domain of myristoylated and non-myristoylated HIV-1 Nef protein. Journal of Molecular Biology (London), 289(1), 123-138. doi:10.1006/jmbi.1999.2740.

Item is

Files

show Files
hide Files
:
JMolBiol_289_1999_123.pdf (Any fulltext), 781KB
 
File Permalink:
-
Name:
JMolBiol_289_1999_123.pdf
Description:
-
Visibility:
Restricted (Max Planck Institute for Medical Research, MHMF; )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Creators

show
hide
 Creators:
Geyer, Matthias1, Author              
Munte, Claudia E., Author
Schorr, Jacqueline1, Author              
Kellner, Roland, Author
Kalbitzer, Hans Robert1, Author              
Affiliations:
1Emeritus Group Biophysics, Max Planck Institute for Medical Research, Max Planck Society, ou_1497712              

Content

show
hide
Free keywords: HIV; Nef; myristoylation; NMR spectroscopy; structure determination
 Abstract: Negative factor (Nef) is a regulatory myristoylated protein of human immunodeficiency virus (HIV) that has a two-domain structure consisting of an anchor domain and a core domain separated by a specific cleavage site of the HIV proteases. For structural analysis, the HIV-1 Nef anchor domain (residues 2-57) was synthesized with a myristoylated and non-myristoylated N terminus. The structures of the two peptides were studied by1H NMR spectroscopy and a structural model was obtained by restrained molecular dynamic simulations. The non-myristoylated peptide does not have a unique, compactly folded structure but occurs in a relatively extended conformation. The only rather well-defined canonical secondary structure element is a short two-turn -helix (H2) between Arg35 and Gly41. A tendency for another helical secondary structure element (H1) can be observed for the arginine-rich region (Arg17 to Arg22). Myristoylation of the N-terminal glycine residue leads to stabilization of both helices, H1 and H2. The first helix in the arginine-rich region is stabilized by the myristoylation and now contains residues Pro14 to Arg22. The second helix appears to be better defined and to contain more residues (Ala33 to Gly41) than in the absence of myristoylation. In addition, the hydrophobic N-terminal myristic acid residue interacts closely with the side-chain of Trp5 and thereby forms a loop with Gly2, Gly3 and Lys4 in the kink region. This interaction could possibly be disturbed by phosphorylation of a nearby serine residue, and modifiy the characteristic membrane interactions of the HIV-1 Nef anchor domain

Details

show
hide
Language(s): eng - English
 Dates: 1998-11-201999-03-261999-05-28
 Publication Status: Published in print
 Pages: 16
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: eDoc: 666536
DOI: 10.1006/jmbi.1999.2740
URI: http://www.ncbi.nlm.nih.gov/pubmed/10339411
Other: 4415
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Molecular Biology (London)
  Other : J Mol Biol
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: London : Academic Press
Pages: - Volume / Issue: 289 (1) Sequence Number: - Start / End Page: 123 - 138 Identifier: ISSN: 0022-2836
CoNE: https://pure.mpg.de/cone/journals/resource/954922646042