Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Effects of subgrid-scale snow thickness variability on radiative transfer in sea ice

Abraham, C., Stecher, N., Monahan, A., & Michel, C. (2015). Effects of subgrid-scale snow thickness variability on radiative transfer in sea ice. Journal of Geophysical Research - Oceans, 120, 5597-5614. doi:10.1002/2015JC010741.

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Abraham_et_al-2015-Journal_of_Geophysical_Research__Oceans.pdf (Verlagsversion), 2MB
Name:
Abraham_et_al-2015-Journal_of_Geophysical_Research__Oceans.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Abraham, Carsten1, Autor
Stecher, Nadja, Autor
Monahan, Adam, Autor
Michel, Christine, Autor
Affiliations:
1Climate Dynamics, The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society, Bundesstraße 53, 20146 Hamburg, DE, ou_913568              

Inhalt

einblenden:
ausblenden:
Schlagwörter: light transfer; radiative transfer; sea ice modeling; snow thickness distribution; snow variability
 Zusammenfassung: Snow is a principal factor in controlling heat and light fluxes through sea ice. With the goal of improving radiative and heat flux estimates through sea ice in regional and global models without the need of detailed snow property descriptions, a new parameterization including subgrid-scale snow thickness variability is presented. One-parameter snow thickness distributions depending only on the gridbox-mean snow thickness are introduced resulting in analytical solutions for the fluxes of heat and light through the snow layer. As the snowpack melts, these snow thickness distributions ensure a smooth seasonal transition of the light field under sea ice. Spatially homogenous melting applied to an inhomogeneous distribution of snow thicknesses allows the appearance of bare sea ice areas and melt ponds before all snow has melted. In comparison to uniform-thickness snow used in previous models, the bias in the under sea-ice light field is halved with this parameterization. Model results from a one-dimensional ocean turbulence model coupled with a thermodynamic sea ice model are compared to observations near Resolute in the Canadian High Arctic. The simulations show substantial improvements not only to the light field at the sea ice base which will affect ice algal growth but also to the sea ice and seasonal snowpack evolution. During melting periods, the snowpack can survive longer while sea ice thickness starts to reduce earlier. © 2015. American Geophysical Union. All Rights Reserved.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2014-12201520152015-08
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1002/2015JC010741
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Journal of Geophysical Research - Oceans
  Andere : JGR
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Hoboken, NJ : Wiley
Seiten: - Band / Heft: 120 Artikelnummer: - Start- / Endseite: 5597 - 5614 Identifikator: Anderer: 2169-9291
CoNE: https://pure.mpg.de/cone/journals/resource/2169-9291