English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Identification of an osmo-dependent and an osmo-independent choline transporter in Acinetobacter baylyi: implications in osmostress protection and metabolic adaptation

Sand, M., Stahl, J., Waclawska, I., Ziegler, C., & Averhoff, B. (2014). Identification of an osmo-dependent and an osmo-independent choline transporter in Acinetobacter baylyi: implications in osmostress protection and metabolic adaptation. Environmental Microbiology, 16(6), 1490-1502. doi:10.1111/1462-2920.12188.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Sand, Miriam1, Author
Stahl, Julia1, Author
Waclawska, Izabela2, Author           
Ziegler, Christine2, Author           
Averhoff, Beate1, Author
Affiliations:
1External Organizations, ou_persistent22              
2Department of Structural Biology, Max Planck Institute of Biophysics, Max Planck Society, ou_2068291              

Content

show
hide
Free keywords: -
 Abstract: Members of the genus Acinetobacter are well known for their metabolic versatility that allows them to adapt to different ecological niches. In previous studies, we have demonstrated that Acinetobacter baylyi ADP1 can cope with high salinities by uptake and accumulation of the well-known compatible solute glycine betaine. Here, we demonstrate that addition of choline restores growth at high salinities. We further show that choline was actively taken up by the cells and converted to glycine betaine. Uptake of choline was induced by high salinity and the presence of choline in the growth medium. At high salinities, glycine betaine was accumulated in the cells whereas in the absence of osmotic stress it was exported. Inspection of the genome sequence followed by mutant studies led to the identification of two genes encoding secondary transporters (BetT1 and BetT2) of the betaine-choline-carnitine transporter (BCCT) family. The BetT1 transporter lacks an extended C-terminal domain usually found in osmoregulated choline BCCTs. BetT1 was found to facilitate osmolarity-independent choline transport most likely by a uniport mechanism. We propose that BetT1 does not primarily function in osmoadaptation but might play a role in metabolic adaptation to choline-rich environments.

Details

show
hide
Language(s): eng - English
 Dates: 2013-07-262014-06
 Publication Status: Issued
 Pages: 13
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: eDoc: 695916
DOI: 10.1111/1462-2920.12188
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Environmental Microbiology
  Other : Environmental Microbiology and Environmental Microbiology Reports
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Wiley
Pages: - Volume / Issue: 16 (6) Sequence Number: - Start / End Page: 1490 - 1502 Identifier: ISSN: 1462-2912
CoNE: https://pure.mpg.de/cone/journals/resource/959328105031