hide
Free keywords:
biological specimen preparation; carbon nanotubes; doping; electron microscopy; graphene; nanobiotechnology; self-assembly; suspensions; thin films
Abstract:
For single particle electron cryo-microscopy (cryoEM), contrast loss due to beam-induced charging and specimen movement is a serious problem, as the thin films of vitreous ice spanning the holes of a holey carbon film are particularly susceptible to beam-induced movement. We demonstrate that the problem is at least partially solved by carbon nanotechnology. Doping ice-embedded samples with single-walled carbon nanotubes (SWNT) in aqueous suspension or adding nanocrystalline graphene supports, obtained by thermal conversion of cross-linked self-assembled biphenyl precursors, significantly reduces contrast loss in high-resolution cryoEM due to the excellent electrical and mechanical properties of SWNTs and graphene