Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Microscopic rotary mechanism of ion translocation in the Fo complex of ATP synthases

Pogoryelov, D., Krah, A., Langer, J. D., Yildiz, Ö., Faraldo-Gómez, J. D., & Meier, T. (2010). Microscopic rotary mechanism of ion translocation in the Fo complex of ATP synthases. Nature Chemical Biology, 6, 891-899. doi:10.1038/nchembio.457.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Pogoryelov, Denys1, Autor           
Krah, Alexander2, Autor           
Langer, Julian David3, Autor                 
Yildiz, Özkan1, Autor                 
Faraldo-Gómez, José D.2, Autor           
Meier, Thomas1, Autor           
Affiliations:
1Department of Structural Biology, Max Planck Institute of Biophysics, Max Planck Society, ou_2068291              
2Max Planck Research Group of Theoretical Molecular Biophysics, Max Planck Institute of Biophysics, Max Planck Society, ou_2068295              
3Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Max Planck Society, ou_2068290              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: The microscopic mechanism of coupled c-ring rotation and ion translocation in F(1)F(o)-ATP synthases is unknown. Here we present conclusive evidence supporting the notion that the ability of c-rings to rotate within the F(o) complex derives from the interplay between the ion-binding sites and their nonhomogenous microenvironment. This evidence rests on three atomic structures of the c(15) rotor from crystals grown at low pH, soaked at high pH and, after N,N'-dicyclohexylcarbodiimide (DCCD) modification, resolved at 1.8, 3.0 and 2.2 Å, respectively. Alongside a quantitative DCCD-labeling assay and free-energy molecular dynamics calculations, these data demonstrate how the thermodynamic stability of the so-called proton-locked state is maximized by the lipid membrane. By contrast, a hydrophilic environment at the a-subunit-c-ring interface appears to unlock the binding-site conformation and promotes proton exchange with the surrounding solution. Rotation thus occurs as c-subunits stochastically alternate between these environments, directionally biased by the electrochemical transmembrane gradient.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2010-12
 Publikationsstatus: Erschienen
 Seiten: 9
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: eDoc: 521535
DOI: 10.1038/nchembio.457
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Nature Chemical Biology
  Andere : Nat. Chem. Biol.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: New York, NY : Nature Pub. Group
Seiten: - Band / Heft: 6 Artikelnummer: - Start- / Endseite: 891 - 899 Identifikator: ISSN: 1552-4450
CoNE: https://pure.mpg.de/cone/journals/resource/1000000000021290_1