hide
Free keywords:
-
Abstract:
Biophysical studies of membrane proteins through spectroscopic methods often require that the protein be extracted from its lipid environment and solubilized. Liquid chloroform is one of several organic co-solvents that is successfully used for this purpose. However, our understanding of the influence of such environments on the structure and dynamics of proteins is far from complete. Atomically-detailed molecular simulations may provide valuable insights to help interpret the experimental data derived from these complex systems, provided that appropriate developments in the existing force-fields are made. In this communication we present a novel polarizable model for chloroform, based on classical Drude oscillators. This model was calibrated to reproduce the vaporization enthalpy, density, static dielectric constant and self-diffusion constant of the pure liquid at ambient conditions.