Help Privacy Policy Disclaimer
  Advanced SearchBrowse


  Reconstitution of coupled fumarate respiration in liposomes by incorporating the electron transport enzymes isolated from Wolinella succinogenes

Biel, S., Simon, J., Gross, R., Ruiz, T., Ruitenberg, M., & Kröger, A. (2002). Reconstitution of coupled fumarate respiration in liposomes by incorporating the electron transport enzymes isolated from Wolinella succinogenes. European Journal of Biochemistry, 269(7), 1974-1983. doi:10.1046/j.1432-1033.2002.02842.x.

Item is


show Files




Biel, Simone1, Author
Simon, Jörg1, Author
Gross, Roland1, Author
Ruiz, Teresa2, Author              
Ruitenberg, Maarten3, Author              
Kröger, Achim1, Author
1Institut für Mikrobiologie, Johann Wolfgang Goethe‐Universität, 60439 Frankfurt am Main, Germany, ou_persistent22              
2Department of Structural Biology, Max Planck Institute of Biophysics, Max Planck Society, ou_2068291              
3Department of Biophysical Chemistry, Max Planck Institute of Biophysics, Max Planck Society, ou_2068289              


Free keywords: fumarate respiration; Wolinella succinogenes; proteoliposomes; H+; e ratio; hydrogenase
 Abstract: Hydrogenase and fumarate reductase isolated from Wolinella succinogenes were incorporated into liposomes containing menaquinone. The two enzymes were found to be oriented solely to the outside of the resulting proteoliposomes. The proteoliposomes catalyzed fumarate reduction by H2 which generated an electrical proton potential (Delta(psi) = 0.19 V, negative inside) in the same direction as that generated by fumarate respiration in cells of W. succinogenes. The H+/e ratio brought about by fumarate reduction with H2 in proteoliposomes in the presence of valinomycin and external K+ was approximately 1. The same Delta(psi) and H+/e ratio was associated with the reduction of 2,3-dimethyl-1,4-naphthoquinone (DMN) by H2 in proteoliposomes containing menaquinone and hydrogenase with or without fumarate reductase. Proteoliposomes containing menaquinone and fumarate reductase with or without hydrogenase catalyzed fumarate reduction by DMNH2 which did not generate a Delta(psi). Incorporation of formate dehydrogenase together with fumarate reductase and menaquinone resulted in proteoliposomes catalyzing the reduction of fumarate or DMN by formate. Both reactions generated a Delta(psi) of 0.13 V (negative inside). The H+/e ratio of formate oxidation by menaquinone or DMN was close to 1. The results demonstrate for the first time that coupled fumarate respiration can be restored in liposomes using the well characterized electron transport enzymes isolated from W. succinogenes. The results support the view that Delta(psi) generation is coupled to menaquinone reduction by H2 or formate, but not to menaquinol oxidation by fumarate. Delta(psi) generation is probably caused by proton uptake from the cytoplasmic side of the membrane during menaquinone reduction, and by the coupled release of protons from H2 or formate oxidation on the periplasmic side. This mechanism is supported by the properties of two hydrogenase mutants of W. succinogenes which indicate that the site of quinone reduction is close to the cytoplasmic surface of the membrane.


Language(s): eng - English
 Dates: 2002-02-122001-12-062002-02-212003-10-032002-04
 Publication Status: Published in print
 Pages: 10
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Degree: -



Legal Case


Project information


Source 1

Title: European Journal of Biochemistry
Source Genre: Journal
Publ. Info: Berlin : Published by Springer-Verlag on behalf of the Federation of European Biochemical Societies
Pages: - Volume / Issue: 269 (7) Sequence Number: - Start / End Page: 1974 - 1983 Identifier: ISSN: 0014-2956
CoNE: https://pure.mpg.de/cone/journals/resource/111097776606040