English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Lorenz gauge gravitational self-force calculations of eccentric binaries using a frequency domain procedure

Osburn, T., Forseth, E., Evans, C., & Hopper, S. (2014). Lorenz gauge gravitational self-force calculations of eccentric binaries using a frequency domain procedure. Physical Review D, 90: 104031. doi:10.1103/PhysRevD.90.104031.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-0024-753D-3 Version Permalink: http://hdl.handle.net/11858/00-001M-0000-0024-753E-1
Genre: Journal Article

Files

show Files
hide Files
:
1409.4419.pdf (Preprint), 899KB
Name:
1409.4419.pdf
Description:
File downloaded from arXiv at 2015-01-13 12:33
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
:
PRD90_104031.pdf (Any fulltext), 775KB
Name:
PRD90_104031.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Osburn, Thomas, Author
Forseth, Erik, Author
Evans, Charles, Author
Hopper, Seth1, Author              
Affiliations:
1Astrophysical Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society, ou_24013              

Content

show
hide
Free keywords: General Relativity and Quantum Cosmology, gr-qc
 Abstract: We present an algorithm for calculating the metric perturbations and gravitational self-force for extreme-mass-ratio inspirals (EMRIs) with eccentric orbits. The massive black hole is taken to be Schwarzschild and metric perturbations are computed in Lorenz gauge. The perturbation equations are solved as coupled systems of ordinary differential equations in the frequency domain. Accurate local behavior of the metric is attained through use of the method of extended homogeneous solutions and mode-sum regularization is used to find the self-force. We focus on calculating the self-force with sufficient accuracy to ensure its error contributions to the phase in a long term orbital evolution will be $\delta\Phi \lesssim 10^{-2}$ radians. This requires the orbit-averaged force to have fractional errors $\lesssim 10^{-8}$ and the oscillatory part of the self-force to have errors $\lesssim 10^{-3}$ (a level frequently easily exceeded). Our code meets this error requirement in the oscillatory part, extending the reach to EMRIs with eccentricities of $e \lesssim 0.8$, if augmented by use of fluxes for the orbit-averaged force, or to eccentricities of $e \lesssim 0.5$ when used as a stand-alone code. Further, we demonstrate accurate calculations up to orbital separations of $a \simeq 100 M$, beyond that required for EMRI models and useful for comparison with post-Newtonian theory. Our principal developments include (1) use of fully constrained field equations, (2) discovery of analytic solutions for even-parity static modes, (3) finding a pre-conditioning technique for outer homogeneous solutions, (4) adaptive use of quad-precision and (5) jump conditions to handle near-static modes, and (6) a hybrid scheme for high eccentricities.

Details

show
hide
Language(s):
 Dates: 2014-09-152014-12-112014
 Publication Status: Published in print
 Pages: Updated to more closely reflect published version
 Publishing info: -
 Table of Contents: -
 Rev. Method: -
 Identifiers: arXiv: 1409.4419
DOI: 10.1103/PhysRevD.90.104031
URI: http://arxiv.org/abs/1409.4419
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Physical Review D
  Other : Phys. Rev. D.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Lancaster, Pa. : American Physical Society
Pages: - Volume / Issue: 90 Sequence Number: 104031 Start / End Page: - Identifier: ISSN: 0556-2821
CoNE: /journals/resource/111088197762258