English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Global data set of biogenic VOC emissions calculated by the MEGAN model over the last 30 years

Sindelarova, K., Granier, C., Bouarar, I., Guenther, A., Tilmes, S., Stavrakou, T., et al. (2014). Global data set of biogenic VOC emissions calculated by the MEGAN model over the last 30 years. Atmospheric Chemistry and Physics, 14(17), 9317-9341. doi:10.5194/acp-14-9317-2014.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Sindelarova, K.1, Author
Granier, C.1, Author
Bouarar, I.1, Author
Guenther, A.1, Author
Tilmes, S.1, Author
Stavrakou, T.1, Author
Müller, J.-F.1, Author
Kuhn, U.2, Author           
Stefani, P.1, Author
Knorr, W.1, Author
Affiliations:
1external, ou_persistent22              
2Biogeochemistry, Max Planck Institute for Chemistry, Max Planck Society, ou_1826286              

Content

show
hide
Free keywords: -
 Abstract: The Model of Emissions of Gases and Aerosols from Nature (MEGANv2.1) together with the Modern-Era Retrospective Analysis for Research and Applications (MERRA) meteorological fields were used to create a global emission data set of biogenic volatile organic compounds (BVOC) available on a monthly basis for the time period of 1980-2010. This data set, developed under the Monitoring Atmospheric Composition and Climate project (MACC), is called MEGAN-MACC. The model estimated mean annual total BVOC emission of 760 Tg (C) yr(-1) consisting of isoprene (70 %), monoterpenes (11 %), methanol (6 %), acetone (3 %), sesquiterpenes (2.5 %) and other BVOC species each contributing less than 2 %. Several sensitivity model runs were performed to study the impact of different model input and model settings on isoprene estimates and resulted in differences of up to +/-17% of the reference isoprene total. A greater impact was observed for a sensitivity run applying parameterization of soil moisture deficit that led to a 50% reduction of isoprene emissions on a global scale, most significantly in specific regions of Africa, South America and Australia. MEGAN-MACC estimates are comparable to results of previous studies. More detailed comparison with other isoprene inventories indicated significant spatial and temporal differences between the data sets especially for Australia, Southeast Asia and South America. MEGAN-MACC estimates of isoprene, alpha-pinene and group of monoterpenes showed a reasonable agreement with surface flux measurements at sites located in tropical forests in the Amazon and Malaysia. The model was able to capture the seasonal variation of isoprene emissions in the Amazon forest.

Details

show
hide
Language(s):
 Dates: 2014
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: ISI: 000341992000030
DOI: 10.5194/acp-14-9317-2014
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Atmospheric Chemistry and Physics
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Katlenburg-Lindau, Germany : European Geosciences Union
Pages: - Volume / Issue: 14 (17) Sequence Number: - Start / End Page: 9317 - 9341 Identifier: ISSN: 1680-7316
CoNE: https://pure.mpg.de/cone/journals/resource/111030403014016