English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Direct observation of electron propagation and dielectric screening on the atomic length scale

Neppl, S., Ernstorfer, R., Cavalieri, A. L., Lemell, C., Wachter, G., Magerl, E., et al. (2015). Direct observation of electron propagation and dielectric screening on the atomic length scale. Nature, 517(7534), 342-346. doi:10.1038/nature14094.

Item is

Files

show Files
hide Files
:
Neppl_et_al_15092014.pdf (Any fulltext), 4MB
Name:
Neppl_et_al_15092014.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
2015
Copyright Info:
NPG
License:
-
:
license to publish forms_2014-04-04507A0001.pdf (Copyright transfer agreement), 3MB
 
File Permalink:
-
Name:
license to publish forms_2014-04-04507A0001.pdf
Description:
-
OA-Status:
Visibility:
Private
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Neppl, Stefan1, 2, 3, Author           
Ernstorfer, Ralph4, Author           
Cavalieri, A. L.5, 6, 7, Author           
Lemell, C.8, Author
Wachter, G.8, Author
Magerl, Elisabeth9, Author           
Bothschafter, E. M.10, Author
Jobst, Michael2, 3, Author           
Hofstetter, Michael2, 10, Author           
Kleineberg, Ulf9, 10, Author           
Barth, J. V.3, Author
Menzel, Dietrich3, 11, Author           
Burgdörfer, J.8, 12, Author
Feulner, P.3, Author
Krausz, Ferenc9, 10, Author           
Kienberger, Reinhard2, 3, Author           
Affiliations:
1Lawrence Berkeley National Laboratory, Chemical Sciences Division, Berkeley, California94720, USA, ou_persistent22              
2Attosecond Dynamics, Laboratory for Attosecond Physics, Max Planck Institute of Quantum Optics, Max Planck Society, ou_1445573              
3Physik-Department, Technische Universität München, 85747 Garching, Germany, ou_persistent22              
4Physical Chemistry, Fritz Haber Institute, Max Planck Society, ou_634546              
5Extreme Timescales, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society, ou_1938294              
6Fakultät für Mathematik, Informatik und Naturwissenschaften, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany, ou_persistent22              
7Center for Free-Electron Laser Science (CFEL), Luruper Chaussee 149, 22761 Hamburg, Germany, ou_persistent22              
8Institute for Theoretical Physics, Vienna University of Technology, Wiedner Hauptstrasse 8-10/E136, A-1040 Vienna, Austria, ou_persistent22              
9Laboratory for Attosecond Physics, Max Planck Institute of Quantum Optics, Max Planck Society, ou_1445564              
10Fakultät für Physik, Ludwigs-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching, Germany, ou_persistent22              
11Chemical Physics, Fritz Haber Institute, Max Planck Society, ou_24022              
12Institute of Nuclear Research of the Hungarian Academy of Sciences (ATOMKI), 4001 Debrecen, Hungary, ou_persistent22              

Content

show
hide
Free keywords: Electronic properties and materials
 Abstract: The propagation and transport of electrons in crystals is a fundamental process pertaining to the functioning of most electronic devices. Microscopic theories describe this phenomenon as being based on the motion of Bloch wave packets. These wave packets are superpositions of individual Bloch states with the group velocity determined by the dispersion of the electronic band structure near the central wavevector in momentum space. This concept has been verified experimentally in artificial superlattices by the observation of Bloch oscillations—periodic oscillations of electrons in real and momentum space. Here we present a direct observation of electron wave packet motion in a real-space and real-time experiment, on length and time scales shorter than the Bloch oscillation amplitude and period. We show that attosecond metrology (1 as = 10-18
seconds) now enables quantitative insight into weakly disturbed electron wave packet propagation on the atomic length scale without being hampered by scattering effects, which inevitably occur over macroscopic propagation length scales. We use sub-femtosecond (less than 10-15
seconds) extreme-ultraviolet light pulses to launch photoelectron wave packets inside a tungsten crystal that is covered by magnesium films of varied, well-defined thicknesses of a few ångströms. Probing the moment of arrival of the wave packets at the surface with attosecond precision reveals free-electron-like, ballistic propagation behaviour inside the magnesium adlayer—constituting the semi-classical limit of Bloch wave packet motion. Real-time access to electron transport through atomic layers and interfaces promises unprecedented insight into phenomena that may enable the scaling of electronic and photonic circuits to atomic dimensions. In addition, this experiment allows us to determine the penetration depth of electrical fields at optical frequencies at solid interfaces on the atomic scale

Details

show
hide
Language(s): eng - English
 Dates: 2014-09-152014-11-142015-01-142015-01-15
 Publication Status: Issued
 Pages: 5
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1038/nature14094
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Nature
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: London : Nature Publishing Group
Pages: - Volume / Issue: 517 (7534) Sequence Number: - Start / End Page: 342 - 346 Identifier: ISSN: 0028-0836
CoNE: https://pure.mpg.de/cone/journals/resource/954925427238