English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Analysis of expressed genes of the bacterium 'Candidatus phytoplasma Mali' highlights key features of virulence and metabolism

Siewert, C., Luge, T., Duduk, B., Seemüller, E., Büttner, C., Sauer, S., et al. (2014). Analysis of expressed genes of the bacterium 'Candidatus phytoplasma Mali' highlights key features of virulence and metabolism. PLoS One, 9(4): e94391. doi:10.1371/journal.pone.0094391.

Item is

Files

show Files
hide Files
:
Siewert.pdf (Publisher version), 2MB
Name:
Siewert.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
© 2014 Siewert et al
License:
-

Locators

show
hide
Description:
-
OA-Status:

Creators

show
hide
 Creators:
Siewert, C., Author
Luge, T.1, Author           
Duduk, B., Author
Seemüller, E., Author
Büttner, C., Author
Sauer, S.1, Author           
Kube, M., Author
Affiliations:
1Nutrigenomics and Gene Regulation (Sascha Sauer), Independent Junior Research Groups (OWL), Max Planck Institute for Molecular Genetics, Max Planck Society, ou_1479662              

Content

show
hide
Free keywords: Bacterial Proteins/chemistry/genetics/metabolism *Gene Expression Profiling *Gene Expression Regulation, Bacterial *Genes, Bacterial Host-Pathogen Interactions/genetics Phylogeny Phytoplasma/enzymology/genetics/*metabolism/*pathogenicity Protein Sorting Signals Protein Structure, Secondary Proteomics Reproducibility of Results Reverse Transcriptase Polymerase Chain Reaction Transcriptome/genetics Virulence/genetics
 Abstract: 'Candidatus Phytoplasma mali' is a phytopathogenic bacterium of the family Acholeplasmataceae assigned to the class Mollicutes. This causative agent of the apple proliferation colonizes in Malus domestica the sieve tubes of the plant phloem resulting in a range of symptoms such as witches'--broom formation, reduced vigor and affecting size and quality of the crop. The disease is responsible for strong economical losses in Europe. Although the genome sequence of the pathogen is available, there is only limited information on expression of selected genes and metabolic key features that have not been examined on the transcriptomic or proteomic level so far. This situation is similar to many other phytoplasmas. In the work presented here, RNA-Seq and mass spectrometry shotgun techniques were applied on tissue samples from Nicotiana occidentalis infected by 'Ca. P. mali' strain AT providing insights into transcriptome and proteome of the pathogen. Data analysis highlights expression of 208 genes including 14 proteins located in the terminal inverted repeats of the linear chromosome. Beside a high portion of house keeping genes, the recently discussed chaperone GroES/GroEL is expressed. Furthermore, gene expression involved in formation of a type IVB and of the Sec-dependent secretion system was identified as well as the highly expressed putative pathogenicity-related SAP11-like effector protein. Metabolism of phytoplasmas depends on the uptake of spermidine/putescine, amino acids, co-factors, carbohydrates and in particular malate/citrate. The expression of these transporters was confirmed and the analysis of the carbohydrate cycle supports the suggested alternative energy-providing pathway for phytoplasmas releasing acetate and providing ATP. The phylogenetic analyses of malate dehydrogenase and acetate kinase in phytoplasmas show a closer relatedness to the Firmicutes in comparison to Mycoplasma species indicating an early divergence of the Acholeplasmataceae from the Mollicutes.

Details

show
hide
Language(s): eng - English
 Dates: 2014-04-11
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1371/journal.pone.0094391
ISSN: 1932-6203 (Electronic)
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: PLoS One
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: San Francisco, CA : Public Library of Science
Pages: - Volume / Issue: 9 (4) Sequence Number: e94391 Start / End Page: - Identifier: ISSN: 1932-6203
CoNE: https://pure.mpg.de/cone/journals/resource/1000000000277850