English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Expression of ionotropic receptors in terrestrial hermit crab's olfactory sensory neurons

Groh-Lunow, K. C., Getahun, M. N., Grosse-Wilde, E., & Hansson, B. S. (2015). Expression of ionotropic receptors in terrestrial hermit crab's olfactory sensory neurons. Frontiers in Cellular Neuroscience, 8: 448. doi:10.3389/fncel.2014.00448.

Item is

Files

show Files
hide Files
:
HAN241.pdf (Publisher version), 2MB
Name:
HAN241.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
:
HAN241s1.zip (Supplementary material), 147KB
Name:
HAN241s1.zip
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/zip / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show
hide
Locator:
http://dx.doi.org/10.3389/fncel.2014.00448 (Publisher version)
Description:
OA

Creators

show
hide
 Creators:
Groh-Lunow, Katrin C.1, 2, Author              
Getahun, Merid Negash2, 3, Author              
Grosse-Wilde, Ewald1, Author              
Hansson, Bill S.1, Author              
Affiliations:
1Department of Evolutionary Neuroethology, Prof. B. S. Hansson, MPI for Chemical Ecology, Max Planck Society, ou_421894              
2IMPRS on Ecological Interactions, MPI for Chemical Ecology, Max Planck Society, Jena, DE, ou_421900              
3Department of Neuroethology, Prof. B. S. Hansson, MPI for Chemical Ecology, Max Planck Society, ou_421894              

Content

show
hide
Free keywords: -
 Abstract: Coenobitidae are one out of at least five crustacean lineages which independently succeeded in the transition from water to land. This change in lifestyle required adaptation of the peripheral olfactory organs, the antennules, in order to sense chemical cues in the new terrestrial habitat. Hermit crab olfactory aesthetascs are arranged in a field on the distal segment of the antennular flagellum. Aesthetascs house approximately 300 dendrites with their cell bodies arranged in spindle-like complexes of ca. 150 cell bodies each. While the aesthetascs of aquatic crustaceans have been shown to be the place of odor uptake and previous studies identified ionotropic receptors (IRs) as the putative chemosensory receptors expressed in decapod antennules, the expression of IRs besides the IR co-receptors IR25a and IR93a in olfactory sensory neurons (OSNs) has not been documented yet. Our goal was to reveal the expression and distribution pattern of non-co-receptor IRs in OSNs of Coenobita clypeatus, a terrestrial hermit crab, with RNA in situ hybridization. We expanded our previously published RNAseq dataset, and revealed 22 novel IR candidates in the Coenobita antennules. We then used RNA probes directed against three different IRs to visualize their expression within the OSN cell body complexes. Furthermore we aimed to characterize ligand spectra of single aesthetascs by recording local field potentials and responses from individual dendrites. This also allowed comparison to functional data from insect OSNs expressing antennal IRs. We show that this orphan receptor subgroup with presumably non-olfactory function in insects is likely the basis of olfaction in terrestrial hermit crabs.

Details

show
hide
Language(s):
 Dates: 20152015-02-02
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: Other: HAN241
DOI: 10.3389/fncel.2014.00448
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Frontiers in Cellular Neuroscience
  Other : Front. Cell. Neurosci.
  Abbreviation : FNCEL
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Frontiers Research Foundation
Pages: - Volume / Issue: 8 Sequence Number: 448 Start / End Page: - Identifier: ISSN: 1662-5102
CoNE: https://pure.mpg.de/cone/journals/resource/1662-5102