Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Transport in complex magnetic geometries: 3D modelling of ergodic edge plasmas in fusion experiments

Runov, A., Kasilov, S., Reiter, D., McTaggart, N., Bonnin, X., & Schneider, R. (2003). Transport in complex magnetic geometries: 3D modelling of ergodic edge plasmas in fusion experiments. Journal of Nuclear Materials, 313-316, 1292-1297. doi:10.1016/S0022-3115(02)01500-3.

Item is

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Runov, A.1, Autor           
Kasilov, S.2, Autor
Reiter, D.2, Autor
McTaggart, N.3, Autor           
Bonnin, X.3, Autor           
Schneider, R.1, Autor           
Affiliations:
1Stellarator Theory (ST), Max Planck Institute for Plasma Physics, Max Planck Society, ou_1856287              
2Institute of Plasma Physics, National Science Center, Kharkov Institute of Physics and Technology, 61108, Kharkov, Ukraine; Institut für Plasmaphysik, Forschungszentrum Jülich GmbH, EURATOM Association, Trilateral Euregio Cluster, D-52425, Jülich, Germany, ou_persistent22              
3External Organizations, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: 15th International Conference on Plasma Surface Interactions in Controlled Fusion Devices (PSI 15), Gifu, 2002-05-26 to 2002-05-31
 Zusammenfassung: Both stellarators and tokamaks can have quite complex magnetic topologies in the plasma edge. Special complexity is introduced by ergodic effects producing stochastic domains. Conventional numerical methods from fluid dynamics are not applicable in this case. In the present paper, we discuss two alternative possibilities. Our multiple coordinate system approach (MCSA) [Phys. Plasmas 8 (2001) 916] originally developed for the TEXTOR DED allows modelling of plasma transport in general magnetic field structures. The main idea of the concept is: magnetic field lines can exhibit truly stochastic behavior only for large distances (compared to the Kolmogorov length), while for smaller distances, the field remains regular. Thus, one can divide the computational domain into a finite set of sub-domains, introduce local magnetic coordinate systems in each and use an `interpolated cell mapping' technique to switch between the neighboring coordinate systems. A 3D plasma fluid code (E3D, based upon MCSA) is applied to realistic geometries. We also introduce here some new details of the algorithm (stellarator option). The results obtained both for intrinsic (stellarator) and external (tokamak with ergodic divertor) perturbations of the magnetic field are discussed. Another approach, also using local coordinate systems, but based on more conventional finite difference methods, is also under development. Here, we present the outline of the algorithm and discuss its potential as compared to the Lagrangian Monte-Carlo approach.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2003
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Journal of Nuclear Materials
  Alternativer Titel : J. Nucl. Mater.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Copyright © 2003 Elsevier Science B.V. All rights reserved
Seiten: - Band / Heft: 313-316 Artikelnummer: - Start- / Endseite: 1292 - 1297 Identifikator: -