English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Comparison of the kinetics of different Markov models for ligand binding under varying conditions.

Martini, J. W. R., & Habeck, M. (2015). Comparison of the kinetics of different Markov models for ligand binding under varying conditions. Journal of Chemical Physics, 142(9): 094104. doi:10.1063/1.4908531.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-0026-B0A8-6 Version Permalink: http://hdl.handle.net/11858/00-001M-0000-002A-1C71-B
Genre: Journal Article

Files

show Files
hide Files
:
2139336.pdf (Publisher version), 697KB
Name:
2139336.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Creators

show
hide
 Creators:
Martini, J. W. R., Author
Habeck, M.1, Author              
Affiliations:
1Research Group of Statistical Inverse-Problems in Biophysics, MPI for Biophysical Chemistry, Max Planck Society, ou_1113580              

Content

show
hide
Free keywords: -
 Abstract: We recently derived a Markov model for macromolecular ligand binding dynamics from few physical assumptions and showed that its stationary distribution is the grand canonical ensemble [J. W. R. Martini, M. Habeck, and M. Schlather, J. Math. Chem. 52, 665 (2014)]. The transition probabilities of the proposed Markov process define a particular Glauber dynamics and have some similarity to the Metropolis-Hastings algorithm. Here, we illustrate that this model is the stochastic analog of (pseudo) rate equations and the corresponding system of differential equations. Moreover, it can be viewed as a limiting case of general stochastic simulations of chemical kinetics. Thus, the model links stochastic and deterministic approaches as well as kinetics and equilibrium described by the grand canonical ensemble. We demonstrate that the family of transition matrices of our model, parameterized by temperature and ligand activity, generates ligand binding kinetics that respond to changes in these parameters in a qualitatively similar way as experimentally observed kinetics. In contrast, neither the Metropolis-Hastings algorithm nor the Glauber heat bath reflects changes in the external conditions correctly. Both converge rapidly to the stationary distribution, which is advantageous when the major interest is in the equilibrium state, but fail to describe the kinetics of ligand binding realistically. To simulate cellular processes that involve the reversible stochastic binding of multiple factors, our pseudo rate equation model should therefore be preferred to the Metropolis-Hastings algorithm and the Glauber heat bath, if the stationary distribution is not of only interest.

Details

show
hide
Language(s): eng - English
 Dates: 2015-03-022015-03-07
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: Peer
 Identifiers: DOI: 10.1063/1.4908531
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Chemical Physics
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: 7 Volume / Issue: 142 (9) Sequence Number: 094104 Start / End Page: - Identifier: -