English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Multiple reentrant glass transitions in confined hard-sphere glasses

Mandal, S., Lang, S., Groß, M. S., Oettel, M., Raabe, D., Franosch, T., et al. (2014). Multiple reentrant glass transitions in confined hard-sphere glasses. Nature Communications, 5: 4435. doi:10.1038/ncomms5435.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-0026-B487-E Version Permalink: http://hdl.handle.net/11858/00-001M-0000-0026-B488-C
Genre: Journal Article

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Mandal, Suvendu1, 2, Author              
Lang, Simon3, 4, Author              
Groß, Markus S.2, Author              
Oettel, Martin5, Author              
Raabe, Dierk6, Author              
Franosch, Thomas3, 4, Author              
Varnik, Fathollah1, 7, Author              
Affiliations:
1Theory and Simulation of Complex Fluids, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863393              
2Interdisciplinary Centre for Advanced Materials Simulation (ICAMS), Ruhr-Universität Bochum, Universitätsstrae 150, D-44780 Bochum, Germany, ou_persistent22              
3Institut für Theoretische Physik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstrae 7, D-91058 Erlangen, Germany, ou_persistent22              
4Institut für Theoretische Physik, Leopold-Franzens-Universität Innsbruck, Technikerstrae 25/2, A-6020 Innsbruck, Austria, ou_persistent22              
5Institut für Angewandte Physik, Eberhard Karls-Universität Tübingen, Auf der Morgenstelle 10, D-72076 Tübingen, Germany, ou_persistent22              
6Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863381              
7Interdisciplinary Centre for Advanced Materials Simulation (ICAMS), Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum, Germany, ou_persistent22              

Content

show
hide
Free keywords: computer simulation; controlled study; crystallization; density functional theory; dispersion; dynamics; electric potential; Glass transition; molecular dynamics; nanotechnology; oscillation; particle size; phase transition; phenomenology; separation technique
 Abstract: Glass-forming liquids exhibit a rich phenomenology upon confinement. This is often related to the effects arising from wall-fluid interactions. Here we focus on the interesting limit where the separation of the confining walls becomes of the order of a few particle diameters. For a moderately polydisperse, densely packed hard-sphere fluid confined between two smooth hard walls, we show via event-driven molecular dynamics simulations the emergence of a multiple reentrant glass transition scenario upon a variation of the wall separation. Using thermodynamic relations, this reentrant phenomenon is shown to persist also under constant chemical potential. This allows straightforward experimental investigation and opens the way to a variety of applications in micro-and nanotechnology, where channel dimensions are comparable to the size of the contained particles. The results are in line with theoretical predictions obtained by a combination of density functional theory and the mode-coupling theory of the glass transition.

Details

show
hide
Language(s): eng - English
 Dates: 2014-07-18
 Publication Status: Published in print
 Pages: 8
 Publishing info: -
 Table of Contents: -
 Rev. Method: -
 Identifiers: ISI: 000340622900027
DOI: 10.1038/ncomms5435
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Nature Communications
  Abbreviation : Nat. Commun.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: London : Nature Publishing Group
Pages: - Volume / Issue: 5 Sequence Number: 4435 Start / End Page: - Identifier: ISSN: 2041-1723
CoNE: /journals/resource/2041-1723