English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Tropospheric vertical column densities of NO2 over managed dryland ecosystems (Xinjiang, China): MAX-DOAS measurements vs. 3-D dispersion model simulations based on laboratory-derived NO emission from soil samples

Mamtimin, B., Behrendt, T., Badawy, M. M., Wagner, T., Qi, Y., Wu, Z., et al. (2015). Tropospheric vertical column densities of NO2 over managed dryland ecosystems (Xinjiang, China): MAX-DOAS measurements vs. 3-D dispersion model simulations based on laboratory-derived NO emission from soil samples. Atmospheric Chemistry and Physics, 15(2), 867-882. doi:10.5194/acp-15-867-2015.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Mamtimin, B.1, Author           
Behrendt, T.1, Author           
Badawy, M. M.1, Author           
Wagner, T.2, Author           
Qi, Y.3, Author
Wu, Z.3, Author
Meixner, F. X.1, Author           
Affiliations:
1Biogeochemistry, Max Planck Institute for Chemistry, Max Planck Society, ou_1826286              
2Satellite Remote Sensing, Max Planck Institute for Chemistry, Max Planck Society, ou_1826293              
3external, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: We report on MAX-DOAS observations of NO2 over an oasis-ecotone-desert ecosystem in NW China. There, local ambient NO2 concentrations originate from enhanced biogenic NO emission of intensively managed soils. Our target oasis "Milan" is located at the southern edge of the Taklimakan desert, very remote and well isolated from other potential anthropogenic and biogenic NOx sources. Four observation sites for MAX-DOAS measurements were selected, at the oasis centre, downwind and upwind of the oasis, and in the desert. Biogenic NO emissions in terms of (i) soil moisture and (ii) soil temperature of Milan oasis (iii) different land-cover type sub-units (cotton, Jujube trees, cotton/Jujube mixture, desert) were quantified by laboratory incubation of corresponding soil samples. Net potential NO fluxes were up-scaled to oasis scale by areal distribution and classification of land-cover types derived from satellite images using GIS techniques. A Lagrangian dispersion model (LASAT, Lagrangian Simulation of Aerosol Transport) was used to calculate the dispersion of soil emitted NO into the atmospheric boundary layer over Milan oasis. Three-dimensional (3-D) NO concentrations (30m horizontal resolution) have been converted to 3-D NO2 concentrations, assuming photostationary state conditions. NO2 column densities were simulated by suitable vertical integration of modelled 3-D NO2 concentrations at those downwind and upwind locations, where the MAX-DOAS measurements were performed. Downwind-upwind differences (a direct measure of Milan oasis' contribution to the areal increase of ambient NO2 concentration) of measured and simulated slant (as well as vertical) NO2 column densities show excellent agreement. This agreement is considered as the first successful attempt to prove the validity of the chosen approach to upscale laboratory-derived biogenic NO fluxes to ecosystem field conditions, i.e. from the spatial scale of a soil sample (cm(2)) to the size of an entire agricultural ecosystem (km(2)).

Details

show
hide
Language(s):
 Dates: 2015
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: ISI: 000351170000009
DOI: 10.5194/acp-15-867-2015
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Atmospheric Chemistry and Physics
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Katlenburg-Lindau, Germany : European Geosciences Union
Pages: - Volume / Issue: 15 (2) Sequence Number: - Start / End Page: 867 - 882 Identifier: ISSN: 1680-7316
CoNE: https://pure.mpg.de/cone/journals/resource/111030403014016