English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Isotopic disproportionation during hydrogen isotopic analysis of nitrogen-bearing organic compounds

Nair, S., Geilmann, H., Coplen, T., Qi, H., Gehre, M., Schimmelmann, A., et al. (2015). Isotopic disproportionation during hydrogen isotopic analysis of nitrogen-bearing organic compounds. Rapid Communications in Mass Spectrometry, 29(9), 878-884. doi:10.1002/rcm.7174.

Item is

Files

hide Files
:
BGC2234.pdf (Publisher version), 696KB
 
File Permalink:
-
Name:
BGC2234.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Biogeochemistry, MJBK; )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

hide
 Creators:
Nair, Sreejesh, Author
Geilmann, Heike1, Author           
Coplen, Tyler, Author
Qi, Haiping, Author
Gehre, Matthias, Author
Schimmelmann, Arndt, Author
Brand, W. A.1, Author           
Affiliations:
1Service Facility Stable Isotope/Gas Analytics, Dr. W. A. Brand, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497772              

Content

hide
Free keywords: -
 Abstract: RATIONALE: High-precision hydrogen isotope ratio analysis of nitrogen-bearing organic materials using high-temperature conversion (HTC) techniques has proven troublesome in the past. Formation of reaction products other than molecular hydrogen (H2) has been suspected as a possible cause of incomplete H2 yield and hydrogen isotopic fractionation. METHODS: The classical HTC reactor setup and a modified version including elemental chromium, both operated at temperatures in excess of 1400 °C, have been compared using a selection of nitrogen-bearing organic compounds, including caffeine. A focus of the experiments was to avoid or suppress hydrogen cyanide (HCN) formation and to reach quantitative H2 yields. The technique also was optimized to provide acceptable sample throughput. RESULTS: The classical HTC reaction of a number of selected compounds exhibited H2 yields from 60 to 90 %. Yields close to 100 % were measured for the experiments with the chromium-enhanced reactor. The δ2H values also were substantially different between the two types of experiments. For the majority of the compounds studied, a highly significant relationship was observed between the amount of missing H2 and the number of nitrogen atoms in the molecules, suggesting the pyrolytic formation of HCN as a byproduct. A similar linear relationship was found between the amount of missing H2 and the observed hydrogen isotopic result, reflecting isotopic fractionation. CONCLUSIONS: The classical HTC technique to produce H2 from organic materials using high temperatures in the presence of glassy carbon is not suitable for nitrogen-bearing compounds. Adding chromium to the reaction zone improves the yield to 100 % in most cases. The initial formation of HCN is accompanied by a strong hydrogen isotope effect, with the observed hydrogen isotope results on H2 being substantially shifted to more negative δ2H values. The reaction can be understood as an initial disproportionation leading to H2 and HCN with the HCN-hydrogen systematically enriched in 2H by more than 50 ‰. In the reaction of HCN with chromium, H2 and chromiumcontaining solid residues are formed quantitatively.

Details

hide
Language(s):
 Dates: 2015-02-182015-03-262015
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: Other: BGC2234
DOI: 10.1002/rcm.7174
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

hide
Title: Rapid Communications in Mass Spectrometry
  Other : Rapid Commun. Mass Spectrom.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: New York, NY : John Wiley & Sons
Pages: - Volume / Issue: 29 (9) Sequence Number: - Start / End Page: 878 - 884 Identifier: ISSN: 0951-4198
CoNE: https://pure.mpg.de/cone/journals/resource/954925574961