English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  STED nanoscopy with fluorescent quantum dots.

Hanne, J., Falk, H. J., Görlitz, F., Hoyer, P., Engelhardt, J., Sahl, S. J., et al. (2015). STED nanoscopy with fluorescent quantum dots. Nature Communications, 6: 7127. doi:10.1038/ncomms8127.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-0027-1290-2 Version Permalink: http://hdl.handle.net/21.11116/0000-0002-A718-7
Genre: Journal Article

Files

show Files
hide Files
:
2156719.pdf (Publisher version), 2MB
Name:
2156719.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
:
2156719_Suppl.pdf (Supplementary material), 3MB
Name:
2156719_Suppl.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Hanne, J., Author
Falk, H. J., Author
Görlitz, F., Author
Hoyer, P.1, Author              
Engelhardt, J.1, Author              
Sahl, S. J.1, Author              
Hell, S. W.1, Author              
Affiliations:
1Department of NanoBiophotonics, MPI for biophysical chemistry, Max Planck Society, ou_578627              

Content

show
hide
Free keywords: -
 Abstract: The widely popular class of quantum-dot molecular labels could so far not be utilized as standard fluorescent probes in STED (stimulated emission depletion) nanoscopy. This is because broad quantum-dot excitation spectra extend deeply into the spectral bands used for STED, thus compromising the transient fluorescence silencing required for attaining super-resolution. Here we report the discovery that STED nanoscopy of several red-emitting commercially available quantum dots is in fact successfully realized by the increasingly popular 775 nm STED laser light. A resolution of presently ~50 nm is demonstrated for single quantum dots, and sub-diffraction resolution is further shown for imaging of quantum-dot-labelled vimentin filaments in fibroblasts. The high quantum-dot photostability enables repeated STED recordings with >1,000 frames. In addition, we have evidence that the tendency of quantum-dot labels to blink is largely suppressed by combined action of excitation and STED beams. Quantum-dot STED significantly expands the realm of application of STED nanoscopy, and, given the high stability of these probes, holds promise for extended time-lapse imaging.

Details

show
hide
Language(s): eng - English
 Dates: 2015-05-08
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: Peer
 Identifiers: DOI: 10.1038/ncomms8127
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Nature Communications
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: 6 Volume / Issue: 6 Sequence Number: 7127 Start / End Page: - Identifier: -