English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  A wireless FSCV monitoring IC with analog background subtraction and UWB telemetry.

Dorta-Quinones, C., Wang, X., Dokania, R., Gailey, A., Lindau, M., & Apsel, A. (2016). A wireless FSCV monitoring IC with analog background subtraction and UWB telemetry. IEEE Transactions on Biomedical Circuits and Systems, 10(2), 289-299. doi:10.1109/TBCAS.2015.2421513.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-0027-7726-1 Version Permalink: http://hdl.handle.net/11858/00-001M-0000-002C-79E2-0
Genre: Journal Article

Files

show Files
hide Files
:
2157205.pdf (Publisher version), 2MB
 
File Permalink:
-
Name:
2157205.pdf
Description:
-
Visibility:
Restricted (Max Planck Institute for Biophysical Chemistry (Karl Friedrich Bonhoeffer Institute), Göttingen; )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Description:
-

Creators

show
hide
 Creators:
Dorta-Quinones, C., Author
Wang, X., Author
Dokania, R., Author
Gailey, A., Author
Lindau, M.1, Author              
Apsel, A., Author
Affiliations:
1Research Group of Nanoscale Cell Biology, MPI for Biophysical Chemistry, Max Planck Society, ou_1832294              

Content

show
hide
Free keywords: -
 Abstract: A 30-μW wireless fast-scan cyclic voltammetry monitoring integrated circuit for ultra-wideband (UWB) transmission of dopamine release events in freely-behaving small animals is presented. On-chip integration of analog background subtraction and UWB telemetry yields a 32-fold increase in resolution versus standard Nyquist-rate conversion alone, near a four-fold decrease in the volume of uplink data versus single-bit, third-order, delta-sigma modulation, and more than a 20-fold reduction in transmit power versus narrowband transmission for low data rates. The 1.5- {\rm mm}^{2} chip, which was fabricated in 65-nm CMOS technology, consists of a low-noise potentiostat frontend, a two-step analog-to-digital converter (ADC), and an impulse-radio UWB transmitter (TX). The duty-cycled frontend and ADC/UWB-TX blocks draw 4 \mu {\rm A} and 15 \mu {\rm A} from 3-V and 1.2-V supplies, respectively. The chip achieves an input-referred current noise of 92 {\rm pA}_{\rm \rms} and an input current range of \pm {430}~{\rm nA} at a conversion rate of 10 kHz. The packaged device operates from a 3-V coin-cell battery, measures 4.7 ,\times, 1.9 {\rm cm}^{2} , weighs 4.3 g (including the battery and antenna), and can be carried by small animals. The system was validated by wirelessly recording flow-injection of dopamine with concentrations in the range of 250 nM to 1 \mu {\rm M} with a carbon-fiber microelectrode (CFM) using 300-V/s FSCV.

Details

show
hide
Language(s): eng - English
 Dates: 2015-06-052016-04
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: Peer
 Identifiers: DOI: 10.1109/TBCAS.2015.2421513
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: IEEE Transactions on Biomedical Circuits and Systems
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 10 (2) Sequence Number: - Start / End Page: 289 - 299 Identifier: -