Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Slowness and sparseness have diverging effects on complex cell learning

Lies, J.-P., Häfner, R., & Bethge, M. (2014). Slowness and sparseness have diverging effects on complex cell learning. PLoS Computational Biology, 10(3), 1-11. doi:10.1371/journal.pcbi.1003468.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Urheber

einblenden:
ausblenden:
 Urheber:
Lies, J-P, Autor           
Häfner, RM, Autor           
Bethge, M1, 2, Autor           
Affiliations:
1Research Group Computational Vision and Neuroscience, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497805              
2Max Planck Institute for Biological Cybernetics, Max Planck Society, Spemannstrasse 38, 72076 Tübingen, DE, ou_1497794              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Following earlier studies which showed that a sparse coding principle may explain the receptive field properties of complex cells in primary visual cortex, it has been concluded that the same properties may be equally derived from a slowness principle. In contrast to this claim, we here show that slowness and sparsity drive the representations towards substantially different receptive field properties. To do so, we present complete sets of basis functions learned with slow subspace analysis (SSA) in case of natural movies as well as translations, rotations, and scalings of natural images. SSA directly parallels independent subspace analysis (ISA) with the only difference that SSA maximizes slowness instead of sparsity. We find a large discrepancy between the filter shapes learned with SSA and ISA. We argue that SSA can be understood as a generalization of the Fourier transform where the power spectrum corresponds to the maximally slow subspace energies in SSA. Finally, we investigate the trade-off between slowness and sparseness when combined in one objective function.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2014-03
 Publikationsstatus: Online veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1371/journal.pcbi.1003468
eDoc: e1003468
BibTex Citekey: LiesHB2014
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: PLoS Computational Biology
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 10 (3) Artikelnummer: - Start- / Endseite: 1 - 11 Identifikator: -