English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Radiative forcing by forest and subsequent feedbacks in the early Eocene climate

Port, U., Claussen, M., & Brovkin, V. (2015). Radiative forcing by forest and subsequent feedbacks in the early Eocene climate. Climate of the Past Discussions, 11, 997-1029. doi:10.5194/cpd-11-997-2015.

Item is

Files

show Files
hide Files
:
cpd-11-997-2015.pdf (Publisher version), 2MB
Name:
cpd-11-997-2015.pdf
Description:
Discussion Paper
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Port, Ulrike1, Author           
Claussen, Martin1, Author                 
Brovkin, Victor2, Author                 
Affiliations:
1Director’s Research Group LES, The Land in the Earth System, MPI for Meteorology, Max Planck Society, ou_913564              
2Climate-Biogeosphere Interaction, The Land in the Earth System, MPI for Meteorology, Max Planck Society, ou_913566              

Content

show
hide
Free keywords: -
 Abstract: Using the Max Planck Institute for Meteorology Earth System Model, we investigate the forcing of forests and the feedback triggered by forests in the pre-industrial climate and in the early Eocene climate (about 54 to 52 million years ago). Other than the interglacial, pre-industrial climate, the early Eocene climate was characterised by high temperatures which led to almost ice-free poles. We compare simulations in which all continents are covered either by dense forest or by bare soil. To isolate the effect of soil albedo, we choose either bright soils or dark soils, respectively. Considering bright soil, forests warm in both, the early Eocene climate and the current climate, but the warming differs due to differences in climate feedbacks. The lapse-rate and water-vapour feedback is stronger in early Eocene climate than in current climate, but strong and negative cloud feedbacks and cloud masking in the early Eocene climate outweigh the stronger positive lapse-rate and water-vapour feedback. In the sum, global mean warming is weaker in the early Eocene climate. Sea-ice related feedbacks are weak in the almost ice-free climate of the early Eocene leading to a weak polar amplification. Considering dark soil, our results change. Forests cools stronger in the early Eocene climate than in the current climate because the lapse-rate and water-vapour feedback is stronger in the early Eocene climate while cloud feedbacks and cloud masking are equally strong in both climates. The different temperature change by forest in both climates highlights the state-dependency of vegetation's impact on climate.

Details

show
hide
Language(s): eng - English
 Dates: 2015-1220152015-032015
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.5194/cpd-11-997-2015
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Climate of the Past Discussions
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 11 Sequence Number: - Start / End Page: 997 - 1029 Identifier: -