English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Experimental and model based analysis of single and multi- stage membrane reactors for the oxidation of short-chain hydrocarbons in a pilot scale

Hamel, C., Tota, A., Klose, F., Tsotsas, E., & Seidel-Morgenstern, A. (2007). Experimental and model based analysis of single and multi- stage membrane reactors for the oxidation of short-chain hydrocarbons in a pilot scale. In European Congress of Chemical Engineering - ECCE-6: Book of Abstracts (pp. 135-136).

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-0027-A8E2-0 Version Permalink: http://hdl.handle.net/11858/00-001M-0000-0027-A8E3-E
Genre: Meeting Abstract

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Hamel, C.1, 2, Author              
Tota, A.2, Author              
Klose, F.2, Author              
Tsotsas, E.2, Author
Seidel-Morgenstern, A.1, 2, Author              
Affiliations:
1Physical and Chemical Foundations of Process Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society, ou_1738150              
2Otto-von-Guericke-Universität Magdeburg, External Organizations, ou_1738156              

Content

show
hide
Free keywords: Membrane reactors; pilot plant; selectivity enhancement; ethane; propane
 Abstract: This contribution intends to provide a deeper insight into various aspects of multi stage dosing concepts based on an experimental and model based analysis. For this aim the oxidative dehydrogenation (ODH) of ethane to ethylene and propane to propylene on a VOx/Al2O3 catalyst were considered as model reactions. For the experimental study, a pilot scale set-up has been constructed with a single stage packed bed membrane reactor and a three stage cascade. The inner/outer membrane diameter was 21/35 mm. Asymmetric alumina and sinter metal membranes were investigated. For comparison with a conventional fixed-bed reactor operation was feasible using the co-feed mode. Reduced simple 1D and more detailed 2D models have been used to identify optimal operation parameters and to describe the concentration and temperature profiles, respectively. Based on a preliminary theoretical analysis, a large set of experimental studies was carried out in a temperature range between 520/630°C (ethane) and 350/500°C (propane). The molar O2/CnHm ratio was varied between 0.5 and 8. In the three stage membrane reactor different dosing profiles could be realised, e.g. increasing (10-30-60), uniform (33-33-33) and decreasing (60-30-10) profiles. Due to the separated and distributed feeding of the reactants, the resulting concentration and residence time profiles and the corresponding product spectra are different in membrane reactors compared to fixed-bed reactors. The analysis performed reveals for the investigated operation range a higher ethylene/propylene selectivity and simultaneously a higher conversion in membrane reactors. In case of low oxygen concentrations the selectivity of the desired product ethylene can be increased significantly compared to the conventional fixed-bed reactor. The developed detailed 2D models allow a good mathematical description of the exothermal reactions taking place in the membrane reactor. The obtained results for the ODH of propane are similar even though the increase of the propylene selectivity is not so distinctive compared to ethylene.

Details

show
hide
Language(s): eng - English
 Dates: 2007
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: -
 Identifiers: eDoc: 338974
 Degree: -

Event

show
hide
Title: ECCE-6 : 6th European Congress of Chemical Engineering
Place of Event: Copenhagen, Denmark
Start-/End Date: 2007-09-16 - 2007-09-21

Legal Case

show

Project information

show

Source 1

show
hide
Title: European Congress of Chemical Engineering - ECCE-6: Book of Abstracts
Source Genre: Proceedings
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 2 Sequence Number: - Start / End Page: 135 - 136 Identifier: -