English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Compound exocytosis and cumulative fusion in eosinophils.

Hafez, I., Stolpe, A., & Lindau, M. (2003). Compound exocytosis and cumulative fusion in eosinophils. Journal of Biological Chemistry, 278, 44921-44928. doi:10.1074/jbc.M306013200.

Item is

Files

show Files
hide Files
:
2167127.pdf (Publisher version), 2MB
Name:
2167127.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Description:
-

Creators

show
hide
 Creators:
Hafez, I., Author
Stolpe, A., Author
Lindau, M.1, Author              
Affiliations:
1Research Group of Nanoscale Cell Biology, MPI for Biophysical Chemistry, Max Planck Society, ou_1832294              

Content

show
hide
Free keywords: -
 Abstract: Focal release of cytotoxic proteins by eosinophils onto the target surface plays an important role in parasite killing. Degranulation was stimulated by intracellular application of calcium and guanosine 5'-3-O-(thio)triphosphate via the recording patch pipette or via streptolysin-O permeabilization. Exocytotic fusion was monitored by capacitance measurements, whereas release of fluorescent weak bases, which accumulate selectively within eosinophil granules, was followed by fluorescence imaging. Several distinct types of granule fusion events were directly observed by simultaneous capacitance and fluorescence measurements. These are fusion of a single granule with the plasma membrane, intracellular granule-granule fusion, fusion of large compounds of pre-fused granules with the plasma membrane (compound exocytosis), and sequential fusion of granules to granules previously fused to the plasma membrane. Extensive granule-granule fusion was also observed by electron microscopy of permeabilized cells. All these fusion mechanisms contribute to focal release. The coexistence of distinct modes of exocytosis suggests that their regulation may modulate effector functions of eosinophils during helminth infection and allergic response.

Details

show
hide
Language(s): eng - English
 Dates: 2003-11-07
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1074/jbc.M306013200
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Biological Chemistry
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 278 Sequence Number: - Start / End Page: 44921 - 44928 Identifier: -