ausblenden:
Schlagwörter:
calcium imaging, frog, NMDA receptors, olfactory bulb, Rana pipiens, two−photon scanning laser microscopy
Zusammenfassung:
We measured Ca2+ concentration, [Ca2+], transients in mitral cell distal apical dendritic tufts produced by physiological odour stimulation of the olfactory epithelium and electrical stimulation of the olfactory nerve (ON) using two−photon scanning and conventional wide−field microscopy of Ca2+−Green−1 dextran in an in vitro frog nose−brain preparation. Weak or strong ON shock−evoked fluorescence transients always had short latency with an onset 0−10 ms after the onset of the bulb local field potential, rapidly increasing to a peak of up to 25% fractional fluorescence change (DeltaF/F) in 10−30 ms, were blocked by 10 ?m CNQX, decaying with a time constant of about 1 s. With stronger ON shocks that activated many receptor axons, an additional, delayed, sustained AP5−sensitive component (peak at = 0.5 s, up to 40% DeltaF/F maximum) could usually be produced. Odour−evoked [Ca2+] transients sometimes displayed a rapid onset phase that peaked within 50 ms but always had a sustained phase that peaked 0.5−1.5 s after onset, regardless of the strength of the odour or the amplitude of the response. These were considerably larger (up to 150% DeltaF/F) than those evoked by ON shock. Odour−evoked [Ca2+] transients were also distinguished from ON shock−evoked transients by tufts in different glomeruli responding with different delays (time to onset differed by up to 1.5 s between different tufts for the same odour). Odour−evoked [Ca2+] transients were increased by AMPA−kainate receptor blockade, but substantially blocked by AP5. Electrical stimulation of the lateral olfactory tract (5−6 stimuli at 10 Hz) that evoked granule cell feedback inhibition, blocked 60−100% of the odour−evoked [Ca2+] transient in tufts when delivered within about 0.5 s of the odour. LOT−mediated inhibition was blocked by 10 ?m bicuculline