English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Time-domain separation of optical properties from structural transitions in resonantly bonded materials

Waldecker, L., Miller, T. A., Rudé, M., Bertoni, R., Osmond, J., Pruneri, V., et al. (2015). Time-domain separation of optical properties from structural transitions in resonantly bonded materials. Nature Materials, 14(10), 991-995. doi:10.1038/nmat4359.

Item is

Files

show Files
hide Files
:
nmat4359_auproof_RE.pdf (Any fulltext), 2MB
Name:
nmat4359_auproof_RE.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
2015
Copyright Info:
NPG
License:
-

Locators

show

Creators

show
hide
 Creators:
Waldecker, Lutz1, Author           
Miller, Timothy A.2, Author
Rudé, Miquel2, Author
Bertoni, Roman1, Author           
Osmond, Johann2, Author
Pruneri, Valerio2, 3, Author
Simpson, Robert4, Author
Ernstorfer, Ralph1, Author           
Wall, Simon2, Author
Affiliations:
1Physical Chemistry, Fritz Haber Institute, Max Planck Society, ou_634546              
2ICFO—Institut de Ciències Fotòniques, Mediterranean Technology Park, 08860, Castelldefels, Barcelona, Spain, ou_persistent22              
3ICREA—Institució Catalana de Recerca i Estudi Avançats, 08015 Barcelona, Spain, ou_persistent22              
4SUTD— Singapore University of Technology & Design, 487372, Singapore, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: The extreme electro-optical contrast between crystalline and amorphous states in phase-change materials is routinely exploited in optical data storage and future applications include universal memories, flexible displays, reconfigurable optical circuits, and logic devices. Optical contrast is believed to arise owing to a change in crystallinity. Here we show that the connection between optical properties and structure can be broken. Using a combination of single-shot femtosecond electron diffraction and optical spectroscopy, we simultaneously follow the lattice dynamics and dielectric function in the phase-change material Ge2Sb2Te5 during an irreversible state transformation. The dielectric function changes by 30% within 100 fs owing to a rapid depletion of electrons from resonantly bonded states. This occurs without perturbing the crystallinity of the lattice, which heats with a 2-ps time constant. The optical changes are an order of magnitude larger than those achievable with silicon and present new routes to manipulate light on an ultrafast timescale without structural changes.

Details

show
hide
Language(s): eng - English
 Dates: 2015-06-102015-03-032015-06-222015-07-272015-10
 Publication Status: Issued
 Pages: 5
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: arXiv: 1412.0901v2
DOI: 10.1038/nmat4359
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Nature Materials
  Abbreviation : Nat. Mater.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: London, UK : Nature Pub. Group
Pages: - Volume / Issue: 14 (10) Sequence Number: - Start / End Page: 991 - 995 Identifier: ISSN: 1476-1122
CoNE: https://pure.mpg.de/cone/journals/resource/111054835734000