Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  On the uncertainty of phenological responses to climate change, and implications for a terrestrial biosphere model

Migliavacca, M., Sonnentag, O., Keenan, T. F., Cescatti, A., O'Keefe, J., & Richardson, A. D. (2012). On the uncertainty of phenological responses to climate change, and implications for a terrestrial biosphere model. Biogeosciences, 9(6), 2063-2083. doi:10.5194/bg-9-2063-2012.

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
BEX339.pdf (Verlagsversion), 2MB
Name:
BEX339.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-
:
BEX339D.pdf (Verlagsversion), 871KB
Name:
BEX339D.pdf
Beschreibung:
Discussion paper
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
http://dx.doi.org/10.5194/bg-9-2063-2012 (Verlagsversion)
Beschreibung:
OA
OA-Status:

Urheber

einblenden:
ausblenden:
 Urheber:
Migliavacca, Mirco1, Autor           
Sonnentag, O., Autor
Keenan, T. F., Autor
Cescatti, A., Autor
O'Keefe, J., Autor
Richardson, A. D., Autor
Affiliations:
1External Organizations, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: ECOSYSTEM PRODUCTIVITY; TREE PHENOLOGY; BOREAL ECOSYSTEM; DECIDUOUs FOREST; TEMPERATE TREES; LEAF PHENOLOGY; CARBON BALANCE; DATA FUSION; PART I; VARIABILITYEnvironmental Sciences & Ecology; Geology;
 Zusammenfassung: Phenology, the timing of recurring life cycle events, controls numerous land surface feedbacks to the climate system through the regulation of exchanges of carbon, water and energy between the biosphere and atmosphere. Terrestrial biosphere models, however, are known to have systematic errors in the simulation of spring phenology, which potentially could propagate to uncertainty in modeled responses to future climate change. Here, we used the Harvard Forest phenology record to investigate and characterize sources of uncertainty in predicting phenology, and the subsequent impacts on model forecasts of carbon and water cycling. Using a model-data fusion approach, we combined information from 20 yr of phenological observations of 11 North American woody species, with 12 leaf bud-burst models that varied in complexity. Akaike's Information Criterion indicated support for spring warming models with photoperiod limitations and, to a lesser extent, models that included chilling requirements. We assessed three different sources of uncertainty in phenological forecasts: parameter uncertainty, model uncertainty, and driver uncertainty. The latter was characterized running the models to 2099 using 2 different IPCC climate scenarios (A1fi vs. B1, i.e. high CO2 emissions vs. low CO2 emissions scenario). Parameter uncertainty was the smallest (average 95% Confidence Interval - CI: 2.4 days century(-1) for scenario B1 and 4.5 days century(-1) for A1fi), whereas driver uncertainty was the largest (up to 8.4 days century(-1) in the simulated trends). The uncertainty related to model structure is also large and the predicted bud-burst trends as well as the shape of the smoothed projections varied among models (+/- 7.7 days century-1 for A1fi, +/- 3.6 days century(-1) for B1). The forecast sensitivity of bud-burst to temperature (i. e. days bud-burst advanced per degree of warming) varied between 2.2 days degrees C-1 and 5.2 days degrees C-1 depending on model structure. We quantified the impact of uncertainties in bud-burst forecasts on simulated photosynthetic CO2 uptake and evapotranspiration (ET) using a process-based terrestrial biosphere model. Uncertainty in phenology model structure led to uncertainty in the description of forest seasonality, which accumulated to uncertainty in annual model estimates of gross primary productivity (GPP) and ET of 9.6% and 2.9%, respectively. A sensitivity analysis shows that a variation of +/- 10 days in bud-burst dates led to a variation of +/- 5.0% for annual GPP and about +/- 2.0% for ET. For phenology models, differences among future climate scenarios (i. e. driver) represent the largest source of uncertainty, followed by uncertainties related to model structure, and finally, related to model parameterization. The uncertainties we have quantified will affect the description of the seasonality of ecosystem processes and in particular the simulation of carbon uptake by forest ecosystems, with a larger impact of uncertainties related to phenology model structure, followed by uncertainties related to phenological model parameterization.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2012
 Publikationsstatus: Erschienen
 Seiten: 21
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: Anderer: BEX339
DOI: 10.5194/bg-9-2063-2012
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Biogeosciences
  Andere : Biogeosciences
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Katlenburg-Lindau, Germany : Copernicus GmbH on behalf of the European Geosciences Union
Seiten: - Band / Heft: 9 (6) Artikelnummer: - Start- / Endseite: 2063 - 2083 Identifikator: ISSN: 1726-4170
CoNE: https://pure.mpg.de/cone/journals/resource/111087929276006