Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Emergence of phenotype switching through continuous and discontinuous evolutionary transitions

Patra, P., & Klumpp, S. (2015). Emergence of phenotype switching through continuous and discontinuous evolutionary transitions. Physical Biology, 12(4): 046004. doi:10.1088/1478-3975/12/4/046004.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
2172430.pdf (Verlagsversion), 2MB
 
Datei-Permalink:
-
Name:
2172430.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Eingeschränkt (Max Planck Institute of Colloids and Interfaces, MTKG; )
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Patra, Pintu1, Autor           
Klumpp, Stefan1, Autor           
Affiliations:
1Stefan Klumpp, Theorie & Bio-Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_1863329              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Bacterial persistence (phenotypic tolerance to antibiotics) provides a prime example of bet-hedging, where normally growing cells generate slow-growing but antibiotic-tolerant persister cells to survive through periods of exposure to antibiotics. The population dynamics of persistence is explained by a phenotype switching mechanism that allows individual cells to switch between these different cellular states with different environmental sensitivities. Here, we perform a theoretical study based on an exact solution for the case of a periodic variation of the environment to address how phenotype switching emerges and under what conditions switching is or is not beneficial for long-time growth. Specifically we report a bifurcation through which a fitness maximum and minimum emerge above a threshold in the duration of exposure to the antibiotic. Only above this threshold, the optimal phenotype switching rates are adjusted to the time scales of the environment, as emphasized by previous theoretical studies, while below the threshold a non-switching population is fitter than a switching one. The bifurcation can be of different type, depending on how the phenotype switching rates are allowed to vary. If the switching rates for both directions of the switch are coupled, the transition is discontinuous and results in evolutionary hysteresis, which we confirm with a stochastic simulation. If the switching rates vary individually, a continuous transition is obtained and no hysteresis is found. We discuss how both scenarios can be linked to changes in the underlying molecular networks.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2015-05-282015
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: BibTex Citekey: 1478-3975-12-4-046004
DOI: 10.1088/1478-3975/12/4/046004
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Physical Biology
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Bristol, UK : IOP
Seiten: - Band / Heft: 12 (4) Artikelnummer: 046004 Start- / Endseite: - Identifikator: ISSN: 1478-3967