Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  A Statistical Framework to Infer Delay and Direction of Information Flow from Measurements of Complex Systems

Schumacher, J., Wunderle, T., Fries, P., Jakel, F., & Pipa, G. (2015). A Statistical Framework to Infer Delay and Direction of Information Flow from Measurements of Complex Systems. Neural computation. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/26079751.

Item is

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Schumacher, J.1, 2, Autor           
Wunderle, T.3, Autor           
Fries, P.3, Autor           
Jakel, F.4, Autor
Pipa, G.4, Autor
Affiliations:
1Department Biogeochemical Processes, Prof. S. E. Trumbore, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497752              
2Department Biogeochemical Processes, Prof. E.-D. Schulze, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497751              
3Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Max Planck Society, ou_2074314              
4external, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: In neuroscience, data are typically generated from neural network activity. The resulting time series represent measurements from spatially distributed subsystems with complex interactions, weakly coupled to a high-dimensional global system. We present a statistical framework to estimate the direction of information flow and its delay in measurements from systems of this type. Informed by differential topology, gaussian process regression is employed to reconstruct measurements of putative driving systems from measurements of the driven systems. These reconstructions serve to estimate the delay of the interaction by means of an analytical criterion developed for this purpose. The model accounts for a range of possible sources of uncertainty, including temporally evolving intrinsic noise, while assuming complex nonlinear dependencies. Furthermore, we show that if information flow is delayed, this approach also allows for inference in strong coupling scenarios of systems exhibiting synchronization phenomena. The validity of the method is demonstrated with a variety of delay-coupled chaotic oscillators. In addition, we show that these results seamlessly transfer to local field potentials in cat visual cortex.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2015-06-142015
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: URI: http://www.ncbi.nlm.nih.gov/pubmed/26079751
Anderer: 762
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Neural computation
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Cambridge, Mass. : MIT Press
Seiten: - Band / Heft: - Artikelnummer: - Start- / Endseite: - Identifikator: ISSN: 0899-7667
CoNE: https://pure.mpg.de/cone/journals/resource/954925561591