English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Exo-endocytosis and closing of the fission pore during endocytosis in single pituitary nerve terminals internally perfused with high calcium concentrations.

Rosenboom, H., & Lindau, M. (1994). Exo-endocytosis and closing of the fission pore during endocytosis in single pituitary nerve terminals internally perfused with high calcium concentrations. Proceedings of the National Academy of Sciences of the United States of America, 91(12), 5267-5271.

Item is

Files

show Files
hide Files
:
2175777.pdf (Publisher version), 1004KB
 
File Permalink:
-
Name:
2175777.pdf
Description:
-
Visibility:
Restricted (UNKNOWN id 303; )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Rosenboom, H., Author
Lindau, M.1, Author              
Affiliations:
1Research Group of Nanoscale Cell Biology, MPI for Biophysical Chemistry, Max Planck Society, ou_1832294              

Content

show
hide
Free keywords: -
 Abstract: An increase in free Ca2+ triggers exocytosis in pituitary nerve terminals leading to an increase in membrane area and membrane capacitance. When Ca2+ is increased by step depolarization, an instantaneous capacitance increase during the first 80 ms is followed by a slow increase extending over several seconds. We measured capacitance changes associated with exocytosis and endocytosis in single pituitary nerve terminals internally perfused with high Ca2+. At 50 microM Ca2+ the capacitance increased by up to 2%/s, similar to the slow phase observed during depolarization. Our results indicate that at the site of fusion very high Ca2+ is required. Following exocytosis, large downward capacitance steps were measured, reflecting endocytosis of large vacuoles. These events were not abrupt but reflected a gradual decrease of fission pore conductance from 8 nS to < 40 pS during 500 ms, revealing the dynamics of individual fission pore closures. Above 300 pS, narrowing of the endocytotic fission pore was approximately 10 times slower than the previously reported expansion of the exocytotic fusion pore. The transition between 300 pS and 0 pS took approximately 200 ms, whereas it has been reported that the exocytotic fusion pore measured in mast cells opens from 0 to 280 pS in < 100 microseconds. The time course of closing of the fission pore may be explained by an exponential decrease in pore diameter occurring at a constant rate.

Details

show
hide
Language(s): eng - English
 Dates: 1994-06-07
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: -
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Proceedings of the National Academy of Sciences of the United States of America
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 91 (12) Sequence Number: - Start / End Page: 5267 - 5271 Identifier: -