Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Pareto Optimization Identifies Diverse Set of Phosphorylation Signatures Predicting Response to Treatment with Dasatinib

Klammer, M., Dybowski, J. N., Hoffmann, D., & Schaab, C. (2015). Pareto Optimization Identifies Diverse Set of Phosphorylation Signatures Predicting Response to Treatment with Dasatinib. PLOS ONE, 10(6): e0128542. doi:10.1371/journal.pone.0128542.

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
journal.pone.0128542.pdf (beliebiger Volltext), 3MB
Name:
journal.pone.0128542.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
open access article
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Klammer, Martin1, Autor
Dybowski, J. Nikolaj1, Autor
Hoffmann, Daniel1, Autor
Schaab, Christoph2, Autor           
Affiliations:
1external, ou_persistent22              
2Cox, Jürgen / Computational Systems Biochemistry, Max Planck Institute of Biochemistry, Max Planck Society, ou_2063284              

Inhalt

einblenden:
ausblenden:
Schlagwörter: CELL LUNG-CANCER; MULTIOBJECTIVE OPTIMIZATION; SIGNALING PATHWAYS; SELECTION; INVASION; KINASE; SRC; ALPHA-6-BETA-4; SENSITIVITY; ALGORITHMS
 Zusammenfassung: Multivariate biomarkers that can predict the effectiveness of targeted therapy in individual patients are highly desired. Previous biomarker discovery studies have largely focused on the identification of single biomarker signatures, aimed at maximizing prediction accuracy. Here, we present a different approach that identifies multiple biomarkers by simultaneously optimizing their predictive power, number of features, and proximity to the drug target in a protein-protein interaction network. To this end, we incorporated NSGA-II, a fast and elitist multi-objective optimization algorithm that is based on the principle of Pareto optimality, into the biomarker discovery workflow. The method was applied to quantitative phosphoproteome data of 19 non-small cell lung cancer (NSCLC) cell lines from a previous biomarker study. The algorithm successfully identified a total of 77 candidate biomarker signatures predicting response to treatment with dasatinib. Through filtering and similarity clustering, this set was trimmed to four final biomarker signatures, which then were validated on an independent set of breast cancer cell lines. All four candidates reached the same good prediction accuracy (83%) as the originally published biomarker. Although the newly discovered signatures were diverse in their composition and in their size, the central protein of the originally published signature - integrin beta 4 (ITGB4) - was also present in all four Pareto signatures, confirming its pivotal role in predicting dasatinib response in NSCLC cell lines. In summary, the method presented here allows for a robust and simultaneous identification of multiple multivariate biomarkers that are optimized for prediction performance, size, and relevance.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2015
 Publikationsstatus: Online veröffentlicht
 Seiten: 16
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: ISI: 000356567400055
DOI: 10.1371/journal.pone.0128542
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: PLOS ONE
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA : PUBLIC LIBRARY SCIENCE
Seiten: - Band / Heft: 10 (6) Artikelnummer: e0128542 Start- / Endseite: - Identifikator: ISSN: 1932-6203