日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

  Actin cytoskeleton of chemotactic amoebae operates close to the onset of oscillations

Westendorf, C., Negrete Jr., J., Bae, A. J., Sandmann, R., Bodenschatz, E., & Beta, C. (2013). Actin cytoskeleton of chemotactic amoebae operates close to the onset of oscillations. PNAS, 110(10), 3853-3858. doi:10.1073/pnas.1216629110.

Item is

基本情報

表示: 非表示:
資料種別: 学術論文

ファイル

表示: ファイル

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Westendorf, Christian1, 著者           
Negrete Jr., Jose1, 著者           
Bae, Albert J.1, 著者           
Sandmann, Rabea1, 著者           
Bodenschatz, Eberhard1, 著者                 
Beta, Carsten1, 著者           
所属:
1Laboratory for Fluid Dynamics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society, ou_2063287              

内容説明

表示:
非表示:
キーワード: Dictyostelium discoideum, microfluidics, caged cAMP, delay-differential equation
 要旨: The rapid reorganization of the actin cytoskeleton in response to external stimuli is an essential property of many motile eukaryotic cells. Here, we report evidence that the actin machinery of chemotactic Dictyostelium cells operates close to an oscillatory instability. When averaging the actin response of many cells to a short pulse of the chemoattractant cAMP, we observed a transient accumulation of cortical actin reminiscent of a damped oscillation. At the single-cell level, however, the response dynamics ranged from short, strongly damped responses to slowly decaying, weakly damped oscillations. Furthermore, in a small subpopulation, we observed self-sustained oscillations in the cortical F-actin concentration. To substantiate that an oscillatory mechanism governs the actin dynamics in these cells, we systematically exposed a large number of cells to periodic pulse trains of different frequencies. Our results indicate a resonance peak at a stimulation period of around 20 s. We propose a delayed feedback model that explains our experimental findings based on a time-delay in the regulatory network of the actin system. To test the model, we performed stimulation experiments with cells that express GFP-tagged fusion proteins of Coronin and actin-interacting protein 1, as well as knockout mutants that lack Coronin and actin-interacting protein 1. These actin-binding proteins enhance the disassembly of actin filaments and thus allow us to estimate the delay time in the regulatory feedback loop. Based on this independent estimate, our model predicts an intrinsic period of 20 s, which agrees with the resonance observed in our periodic stimulation experiments.

資料詳細

表示:
非表示:
言語: eng - English
 日付: 2013-03-05
 出版の状態: 出版
 ページ: -
 出版情報: -
 目次: -
 査読: 査読あり
 識別子(DOI, ISBNなど): eDoc: 649923
DOI: 10.1073/pnas.1216629110
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: PNAS
種別: 学術雑誌
 著者・編者:
所属:
出版社, 出版地: -
ページ: - 巻号: 110 (10) 通巻号: - 開始・終了ページ: 3853 - 3858 識別子(ISBN, ISSN, DOIなど): -