English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Scaling theory of heat transport in quasi-one-dimensional disordered harmonic chains

Bodyfelt, J. D., Zheng, M. C., Fleischmann, R., & Kottos, T. (2013). Scaling theory of heat transport in quasi-one-dimensional disordered harmonic chains. Physical Review E, 87(2): 020101(R). doi:10.1103/PhysRevE.87.020101.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-0029-1029-2 Version Permalink: http://hdl.handle.net/11858/00-001M-0000-0029-102A-F
Genre: Journal Article

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Bodyfelt, Joshua D, Author
Zheng, Mei Chai, Author
Fleischmann, Ragnar1, Author              
Kottos, Tsampikos1, Author              
Affiliations:
1Department of Nonlinear Dynamics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society, ou_2063286              

Content

show
hide
Free keywords: -
 Abstract: We introduce a variant of the banded random matrix ensemble and show, using detailed numerical analysis and theoretical arguments, that the phonon heat current in disordered quasi-one-dimensional lattices obeys a one-parameter scaling law. The resulting β function indicates that an anomalous Fourier law is applicable in the diffusive regime, while in the localization regime the heat current decays exponentially with the sample size. Our approach opens a new way to investigate the effects of Anderson localization in heat conduction based on the powerful ideas of scaling theory.

Details

show
hide
Language(s): eng - English
 Dates: 2013-02-04
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: Peer
 Identifiers: eDoc: 673692
DOI: 10.1103/PhysRevE.87.020101
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Physical Review E
  Alternative Title : Phys. Rev. E
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 87 (2) Sequence Number: 020101(R) Start / End Page: - Identifier: -