日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

  How synaptic weights determine stability of synchrony in networks of pulse-coupled excitatory and inhibitory oscillators

Kriener, B. (2012). How synaptic weights determine stability of synchrony in networks of pulse-coupled excitatory and inhibitory oscillators. Chaos, 22(3):. Retrieved from http://dx.doi.org/10.1063/1.4749794.

Item is

基本情報

表示: 非表示:
資料種別: 学術論文

ファイル

表示: ファイル

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Kriener, Birgit1, 著者           
所属:
1Max Planck Research Group Network Dynamics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society, ou_2063295              

内容説明

表示:
非表示:
キーワード: complex networks, eigenvalues and eigenfunctions, oscillators
 要旨: Under which conditions can a network of pulse-coupled oscillators sustain stable collective activity states? Previously, it was shown that stability of the simplest pattern conceivable, i.e., global synchrony, in networks of symmetrically pulse-coupled oscillators can be decided in a rigorous mathematical fashion, if interactions either all advance or all retard oscillation phases (“mono-interaction network”). Yet, many real-world networks—for example neuronal circuits—are asymmetric and moreover crucially feature both types of interactions. Here, we study complex networks of excitatory (phase-advancing) and inhibitory (phase-retarding) leaky integrate-and-fire (LIF) oscillators. We show that for small coupling strength, previous results for mono-interaction networks also apply here: pulse time perturbations eventually decay if they are smaller than a transmission delay and if all eigenvalues of the linear stability operator have absolute value smaller or equal to one. In this case, the level of inhibition must typically be significantly stronger than that of excitation to ensure local stability of synchrony. For stronger coupling, however, network synchrony eventually becomes unstable to any finite perturbation, even if inhibition is strong and all eigenvalues of the stability operator are at most unity. This new type of instability occurs when any oscillator, inspite of receiving inhibitory input from the network on average, can by chance receive sufficient excitatory input to fire a pulse before all other pulses in the system are delivered, thus breaking the near-synchronous perturbation pattern.

資料詳細

表示:
非表示:
言語: eng - English
 日付: 2012-09-12
 出版の状態: 出版
 ページ: -
 出版情報: -
 目次: -
 査読: 査読あり
 識別子(DOI, ISBNなど): eDoc: 631730
URI: http://dx.doi.org/10.1063/1.4749794
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: Chaos
  出版物の別名 : Chaos
種別: 学術雑誌
 著者・編者:
所属:
出版社, 出版地: -
ページ: - 巻号: 22 (3) 通巻号: 033143 開始・終了ページ: - 識別子(ISBN, ISSN, DOIなど): -