Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Photodissociation of N2O: Energy partitioning

Schmidt, J. A., Johnson, M. S., Lorenz, U., McBane, G. C., & Schinke, R. (2011). Photodissociation of N2O: Energy partitioning. Journal of Chemical Physics, 135(2), 024311-1-024311-10. doi:10.1063/1.3602324.

Item is

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Schmidt, J. A., Autor
Johnson, M. S., Autor
Lorenz, U., Autor
McBane, G. C., Autor
Schinke, R.1, Autor           
Affiliations:
1Max Planck Institute for Dynamics and Self-Organization, Max Planck Society, ou_2063285              

Inhalt

einblenden:
ausblenden:
Schlagwörter: configuration-interaction calculation, absorption cross-sections, nitrous-oxide N2O, Schrodinger-equation, triatomic-distributions, dissociation
 Zusammenfassung: The energy partitioning in the UV photodissociation of N2O is investigated by means of quantum mechanical wave packet and classical trajectory calculations using recently calculated potential energy surfaces. Vibrational excitation of N2 is weak at the onset of the absorption spectrum, but becomes stronger with increasing photon energy. Since the NNO equilibrium angles in the ground and the excited state differ by about 70 degrees, the molecule experiences an extraordinarily large torque during fragmentation producing N2 in very high rotational states. The vibrational and rotational distributions obtained from the quantum mechanical and the classical calculations agree remarkably well. The shape of the rotational distributions is semi-quantitatively explained by a two-dimensional version of the reflection principle. The calculated rotational distribution for excitation with lambda = 204 nm and the translational energy distribution for 193 nm agree well with experimental results, except for the tails of the experimental distributions corresponding to excitation of the highest rotational states. Inclusion of nonadiabatic transitions from the excited to the ground electronic state at relatively large N2O separations, studied by trajectory surface hopping, improves the agreement at high j.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2011-07-14
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: eDoc: 576148
DOI: 10.1063/1.3602324
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Journal of Chemical Physics
  Alternativer Titel : J. Chem. Phys.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 135 (2) Artikelnummer: - Start- / Endseite: 024311-1 - 024311-10 Identifikator: ISSN: 0021-9606