English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Ancient solutions to the Ricci flow with pinched curvature

Brendle, S., Huisken, G., & Sinestrari, C. (2011). Ancient solutions to the Ricci flow with pinched curvature. Duke Mathematical Journal, 158(3), 537-551. doi:10.1215/00127094-1345672.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-0012-640E-4 Version Permalink: http://hdl.handle.net/11858/00-001M-0000-0012-6411-9
Genre: Journal Article

Files

show Files
hide Files
:
0912.0498 (Preprint), 135KB
Name:
0912.0498
Description:
File downloaded from arXiv at 2010-01-26 10:04
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
:
Duke1345672.pdf (Any fulltext), 120KB
File Permalink:
-
Name:
Duke1345672.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Brendle, S., Author
Huisken, Gerhard1, Author              
Sinestrari, C., Author
Affiliations:
1Geometric Analysis and Gravitation, AEI-Golm, MPI for Gravitational Physics, Max Planck Society, Golm, DE, ou_24012              

Content

show
hide
Free keywords: Mathematics, Differential Geometry, math.DG,Mathematics, Analysis of PDEs, math.AP
 Abstract: We show that any ancient solution to the Ricci flow which satisfies a suitable curvature pinching condition must have constant sectional curvature.

Details

show
hide
Language(s):
 Dates: 2009-12-022011
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: -
 Identifiers: arXiv: 0912.0498
URI: http://arxiv.org/abs/0912.0498
DOI: 10.1215/00127094-1345672
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Duke Mathematical Journal
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Durham, N.C. : Duke University Press
Pages: - Volume / Issue: 158 (3) Sequence Number: - Start / End Page: 537 - 551 Identifier: ISSN: 0012-7094
CoNE: /journals/resource/954925395403