English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Crystal structures of the AppA BLUF domain photoreceptor provide insights into blue light-mediated signal transduction

Jung, A., Reinstein, J., Domratcheva, T., Shoeman, R. L., & Schlichting, I. (2006). Crystal structures of the AppA BLUF domain photoreceptor provide insights into blue light-mediated signal transduction. Journal of Molecular Biology (London), 362(4), 717-732. doi:10.1016/j.jmb.2006.07.024.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-0028-3C84-3 Version Permalink: http://hdl.handle.net/11858/00-001M-0000-0028-3C9A-4
Genre: Journal Article
Alternative Title : Crystal Structures of the AppA BLUF Domain Photoreceptor Provide Insights into Blue Light-mediated Signal Transduction

Files

show Files
hide Files
:
JMolBiol_362_2006_717.pdf (Any fulltext), 636KB
 
File Permalink:
-
Name:
JMolBiol_362_2006_717.pdf
Description:
-
Visibility:
Restricted (Max Planck Institute for Medical Research, MHMF; )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Creators

show
hide
 Creators:
Jung, Astrid1, Author              
Reinstein, Jochen1, Author              
Domratcheva, Tatiana1, Author              
Shoeman, Robert L.1, Author              
Schlichting, Ilme1, Author              
Affiliations:
1Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Max Planck Society, ou_1497700              

Content

show
hide
Free keywords: photoreceptor; BLUF; crystallography; signal transduction
 Abstract: Proteins containing a sensor of blue light using FAD (BLUF) domain control diverse cellular processes, such as gene expression, nucleotide metabolism and motility, by relaying blue light signals to distinct output units. Despite its crucial and widespread functions, the mechanism of BLUF signal transduction has remained elusive. We determined crystal structures of the dark-adapted state and of a photo-excited, red-shifted photocycle intermediate of the BLUF unit of AppA, a purple bacterial photoreceptor involved in the light-dependent regulation of photosynthesis gene expression. In contrast to a recently published crystal structure of the AppA BLUF domain determined in the presence of detergent molecules, our structural model of the dark state corresponds well to those reported for the BLUF domains of Tll0078 and BlrB. This establishes that a highly conserved methionine (Met106 in AppA) is next to the active site glutamine (Gln63 in AppA), which is of relevance for the latter's orientation in the dark state and for the mechanism of the photoreaction. The comparison of the dark-adapted and photointermediate state structures shows light-induced conformational alterations, which suggest a path for signal propagation. In particular, we observe a significant movement of the Met106 side-chain. Met106 thereby changes its mode of interaction with Gln63, which supports a light-dependent rotation of the latter. In view of other BLUF structures available, our data further suggest that the hydrogen bond between Asn45 and the backbone carbonyl of His105 breaks upon illumination. The ensuing extensive structural rearrangement of beta-strand 5 is predicted to involve a flip of Met106 out of the flavin-binding pocket and Trp104 moving in to fill the void. We propose that the blue light signal is transmitted towards the surface of the BLUF domain via His44, which serves as a reporter of active site changes.

Details

show
hide
Language(s): eng - English
 Dates: 2006-06-302006-04-182006-07-112006-07-152006-09-29
 Publication Status: Published in print
 Pages: 16
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Molecular Biology (London)
  Other : J Mol Biol
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: London : Academic Press
Pages: - Volume / Issue: 362 (4) Sequence Number: - Start / End Page: 717 - 732 Identifier: ISSN: 0022-2836
CoNE: https://pure.mpg.de/cone/journals/resource/954922646042