English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Observations of the variability of shallow trade wind cumulus cloudiness and mass flux

Lamer, K., Kollias, P., & Nuijens, L. (2015). Observations of the variability of shallow trade wind cumulus cloudiness and mass flux. Journal of Geophysical Research-Atmospheres, 120, 6161-6178. doi:10.1002/2014JD022950.

Item is

Files

show Files
hide Files
:
jgrd52227.pdf (Publisher version), 3MB
Name:
jgrd52227.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Lamer, K.1, Author
Kollias, P.1, Author
Nuijens, Louise2, Author           
Affiliations:
1external, ou_persistent22              
2Observations and Process Studies, The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society, Bundesstraße 53, 20146 Hamburg, DE, ou_913575              

Content

show
hide
Free keywords: FAIR-WEATHER CUMULI; SURFACE OBSERVATIONS; VERTICAL VELOCITY; CLIMATE RESEARCH; CONVECTION; OCEAN; CLOUDS; MODEL; PARAMETERIZATION; FACILITYmass flux; shallow cumulus; remote sensing; cloud structure; marine boundary layer; atmospheric thermodynamic structure;
 Abstract: Two years of ground-based remote sensing observations are used to study the vertical structure of marine cumulus near the island of Barbados, including their cloud fraction and mass flux profile. Daily radar derived cloud fraction profiles peak at different height levels depending on the depth of the cumuli and thus the extent to which they precipitate. Nonprecipitating cumuli have a peak cloud fraction of about 5% near mean cloud base (700m), whereas precipitating cumuli tend to have a peak of only 2% near cloud base. Nineteen percent of the precipitating cumuli are accompanied by large cloud fractions near the detrainment level of cumulus tops (similar to 1700m). Day-to-day variations in cloud fraction near cloud base are modest (similar to 3%). Nonprecipitating cumuli have their largest reflectivities near cloud top and an ascending core surrounded by a subsiding shell. Precipitating cumuli with enhanced elevated cloudiness (stratiform outflow) are deeper and contain larger vertical gradients in reflectivity and Doppler velocity than precipitating cumuli without such outflow. Bulk (3h) statistics reveal that nonprecipitating shallow cumuli are active and organized. They contain on average 79% in-cloud updrafts with 86% of them being organized in large coherent structures contributing to a maximum updraft mass flux of 8-36gm(-2)s(-1) just above cloud base. Alternatively, downdrafts contribute insignificantly to the mass flux and show little vertical and temporal variability (0-7gm(-2)s(-1)). Complementary Raman lidar information suggests that updraft mass flux profile slope is inversely related to environmental relative humidity.

Details

show
hide
Language(s): eng - English
 Dates: 2015
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: ISI: 000357956800024
DOI: 10.1002/2014JD022950
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Geophysical Research-Atmospheres
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Washington, D.C. : American Geophysical Union
Pages: - Volume / Issue: 120 Sequence Number: - Start / End Page: 6161 - 6178 Identifier: ISSN: 0148-0227
CoNE: https://pure.mpg.de/cone/journals/resource/991042728714264_1