English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Wildfires in a warmer climate: Emission fluxes, emission heights and black carbon concentrations in 2090-2099

Veira, A., Lasslop, G., & Kloster, S. (2016). Wildfires in a warmer climate: Emission fluxes, emission heights and black carbon concentrations in 2090-2099. Journal of Geophysical Research-Atmospheres, 121, 3195-3223. doi:10.1002/2015JD024142.

Item is

Files

show Files
hide Files
:
Veira_et_al-2016-Journal_of_Geophysical_Research__Atmospheres.pdf (Publisher version), 10MB
Name:
Veira_et_al-2016-Journal_of_Geophysical_Research__Atmospheres.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Description:
Datenarchiv, nicht frei verfügbar
OA-Status:

Creators

show
hide
 Creators:
Veira, Andreas1, 2, Author           
Lasslop, Gitta1, Author           
Kloster, Silvia1, Author           
Affiliations:
1Emmy Noether Junior Research Group Fire in the Earth System, The Land in the Earth System, MPI for Meteorology, Max Planck Society, ou_913563              
2IMPRS on Earth System Modelling, MPI for Meteorology, Max Planck Society, Bundesstraße 53, 20146 Hamburg, DE, ou_913547              

Content

show
hide
Free keywords: -
 Abstract: Global warming is expected to considerably impact wildfire activity and aerosol emission release in the future. Due to their complexity, the future interactions between climate change, wildfire activity, emission release, and atmospheric aerosol processes are still uncertain. Here we use the process-based fire model SPITFIRE within the global vegetation model JSBACH to simulate wildfire activity for present-day climate conditions and future Representative Concentration Pathways (RCPs). The modeled fire emission fluxes and fire radiative power serve as input for the aerosol-climate model ECHAM6-HAM2, which has been extended by a semiempirical plume height parametrization. Our results indicate a general increase in extratropical and a decrease in tropical wildfire activity at the end of the 21st century. Changes in emission fluxes are most pronounced for the strongest warming scenario RCP8.5 (+49% in the extratropics, −37% in the tropics). Tropospheric black carbon (BC) concentrations are similarly affected by changes in emission fluxes and changes in climate conditions with regional variations of up to −50% to +100%. In the Northern Hemispheric extratropics, we attribute a mean increase in aerosol optical thickness of +0.031±0.002 to changes in wildfire emissions. Due to the compensating effects of fire intensification and more stable atmospheric conditions, global mean emission heights change by at most 0.3 km with only minor influence on BC long-range transport. The changes in wildfire emission fluxes for the RCP8.5 scenario, however, may largely compensate the projected reduction in anthropogenic BC emissions by the end of the 21st century.

Details

show
hide
Language(s): eng - English
 Dates: 2015-1220162016-042016-04
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1002/2015JD024142
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Geophysical Research-Atmospheres
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Wiley
Pages: - Volume / Issue: 121 Sequence Number: - Start / End Page: 3195 - 3223 Identifier: ISSN: 0148-0227
CoNE: https://pure.mpg.de/cone/journals/resource/991042728714264_1