English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Once upon multivariate analyses: when they tell several stories about biological evolution

Renaud, S., Dufour, A.-B., Hardouin, E., Ledevin, R., & Auffray, J.-C. (2015). Once upon multivariate analyses: when they tell several stories about biological evolution. PLoS One, 10(7): e0132801. doi:10.1371/journal.pone.0132801.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-0028-4BA7-D Version Permalink: http://hdl.handle.net/11858/00-001M-0000-0028-4BA8-B
Genre: Journal Article

Files

show Files
hide Files
:
Renaud_2015.pdf (Publisher version), 2MB
Name:
Renaud_2015.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Renaud, Sabrina, Author
Dufour, Anne-Béatrice, Author
Hardouin, Emilie1, Author              
Ledevin, Ronan, Author
Auffray, Jean-Christophe, Author
Affiliations:
1Department Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Max Planck Society, ou_1445635              

Content

show
hide
Free keywords: -
 Abstract: Geometric morphometrics aims to characterize of the geometry of complex traits. It is therefore by essence multivariate. The most popular methods to investigate patterns of differentiation in this context are (1) the Principal Component Analysis (PCA), which is an eigenvalue decomposition of the total variance-covariance matrix among all specimens; (2) the Canonical Variate Analysis (CVA, a.k.a. linear discriminant analysis (LDA) for more than two groups), which aims at separating the groups by maximizing the between-group to withingroup variance ratio; (3) the between-group PCA (bgPCA) which investigates patterns of between-group variation, without standardizing by the within-group variance. Standardizing within-group variance, as performed in the CVA, distorts the relationships among groups, an effect that is particularly strong if the variance is similarly oriented in a comparable way in all groups. Such shared direction of main morphological variance may occur and have a biological meaning, for instance corresponding to the most frequent standing genetic variation in a population. Here we undertake a case study of the evolution of house mouse molar shape across various islands, based on the real dataset and simulations.We investigated how patterns of main variance influence the depiction of among-group differentiation according to the interpretation of the PCA, bgPCA and CVA. Without arguing about a method performing ‘better’ than another, it rather emerges that working on the total or between-group variance (PCA and bgPCA) will tend to put the focus on the role of direction of main variance as line of least resistance to evolution. Standardizing by the within-group variance (CVA), by dampening the expression of this line of least resistance, has the potential to reveal other relevant patterns of differentiation that may otherwise be blurred.

Details

show
hide
Language(s): eng - English
 Dates: 2015-04-162015-06-192015-07-20
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1371/journal.pone.0132801
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: PLoS One
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: San Francisco, CA : Public Library of Science
Pages: 18 S. Volume / Issue: 10 (7) Sequence Number: e0132801 Start / End Page: - Identifier: ISSN: 1932-6203
CoNE: https://pure.mpg.de/cone/journals/resource/1000000000277850