非表示:
キーワード:
3D printing analysis BIOMATERIALS BONE BONE INGROWTH CERAMIC SCAFFOLDS computed tomography DESIGN FABRICATION hydroxyapatite HYDROXYAPATITE SCAFFOLDS image analysis IMPLANTS MICROTOMOGRAPHY porosity REPLACEMENT scaffold SCAFFOLDS synchrotron radiation-based micro three-dimensional-printing TISSUES TOMOGRAPHY
要旨:
Three-dimensional (3D) scaffolds with tailored pores ranging from the nanometer to millimeter scale can support the reconstruction of centimeter-sized osseous defects. Three-dimensional-printing processes permit the voxel-wise fabrication of scaffolds. The present study rests upon 3D-printing with nanoporous hydroxyapatite granulates. The cylindrical design refers to a hollow bone with higher density at the periphery. The millimeter-wide central channel follows the symmetry axis and connects the perpendicularly arranged micro-pores. Synchrotron radiation-based micro computed tomography has served for the non-destructive characterization of the scaffolds. The 3D data treatments: is essential, since, for example, the two-dimensional distance maps overestimate the mean distances to the material by 33-50% with respect to the 3D analysis. The scaffolds contain 70% micrometer-wide pores that are interconnected. Using virtual spheres, which might be related to the cells migrating along the pores, the central channel remains accessible through the micro-pores for spheres with a diameter of up to (350 +/- 35) mu m. Registering the tomograms with their 3D-printing matrices has yielded the almost isotropic shrinking of (27 +/- 2)% owing to the sintering process. This registration also allows comparing the design and tomographic data in a quantitative manner to extract the quality of the fabricated scaffolds. Histological analysis of the scaffolds seeded with osteogenic-stimulated progenitor cells has confirmed the suitability of the 3D-printed scaffolds for potential clinical applications. (c) 2008 Elsevier Ltd. All rights reserved