English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Modeling Population Spike Trains with Specified Time-Varying Spike Rates, Trial-to-Trial Variability, and Pairwise Signal and Noise Correlations

Lyamzin, D. R., Macke, J. H., & Lesica, N. A. (2010). Modeling Population Spike Trains with Specified Time-Varying Spike Rates, Trial-to-Trial Variability, and Pairwise Signal and Noise Correlations. Frontiers in computational neuroscience, 4, 144. doi:10.3389/fncom.2010.00144.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-0028-64E9-6 Version Permalink: http://hdl.handle.net/11858/00-001M-0000-0028-64EA-4
Genre: Journal Article

Files

show Files
hide Files
:
Lyamzin-2010-Modeling Population Spike Trains.pdf (Any fulltext), 3MB
 
File Permalink:
-
Name:
Lyamzin-2010-Modeling Population Spike Trains.pdf
Description:
-
Visibility:
Private
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Description:
-
Description:
-

Creators

show
hide
 Creators:
Lyamzin, D. R., Author
Macke, J. H.1, Author
Lesica, N. A., Author
Affiliations:
1External Organizations, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: As multi-electrode and imaging technology begin to provide us with simultaneous recordings of large neuronal populations, new methods for modeling such data must also be developed. Here, we present a model for the type of data commonly recorded in early sensory pathways: responses to repeated trials of a sensory stimulus in which each neuron has it own time-varying spike rate (as described by its PSTH) and the dependencies between cells are characterized by both signal and noise correlations. This model is an extension of previous attempts to model population spike trains designed to control only the total correlation between cells. In our model, the response of each cell is represented as a binary vector given by the dichotomized sum of a deterministic "signal" that is repeated on each trial and a Gaussian random "noise" that is different on each trial. This model allows the simulation of population spike trains with PSTHs, trial-to-trial variability, and pairwise correlations that match those measured experimentally. Furthermore, the model also allows the noise correlations in the spike trains to be manipulated independently of the signal correlations and single-cell properties. To demonstrate the utility of the model, we use it to simulate and manipulate experimental responses from the mammalian auditory and visual systems. We also present a general form of the model in which both the signal and noise are Gaussian random processes, allowing the mean spike rate, trial-to-trial variability, and pairwise signal and noise correlations to be specified independently. Together, these methods for modeling spike trains comprise a potentially powerful set of tools for both theorists and experimentalists studying population responses in sensory systems.

Details

show
hide
Language(s):
 Dates: 2010
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: -
 Identifiers: Other: 21152346
DOI: 10.3389/fncom.2010.00144
ISSN: 1662-5188 (Electronic)
ISSN: 1662-5188 (Linking)
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Frontiers in computational neuroscience
  Alternative Title : Front. Comput. Neurosci.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 4 Sequence Number: - Start / End Page: 144 Identifier: -