日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

登録内容を編集ファイル形式で保存
 
 
ダウンロード電子メール
  Bayesian population decoding of spiking neurons

Gerwinn, S., Macke, J. H., & Bethge, M. (2009). Bayesian population decoding of spiking neurons. Frontiers in Computational Neuroscience, 3. doi:10.3389/neuro.10.021.2009.

Item is

基本情報

表示: 非表示:
資料種別: 学術論文

ファイル

表示: ファイル

作成者

表示:
非表示:
 作成者:
Gerwinn, S., 著者
Macke, J. H.1, 著者
Bethge, M., 著者
所属:
1External Organizations, ou_persistent22              

内容説明

表示:
非表示:
キーワード: spiking neurons,population coding,approximate inference,Bayesian decoding
 要旨: The timing of action potentials in spiking neurons depends on the temporal dynamics of their inputs and contains information about temporal fluctuations in the stimulus. Leaky integrate-and-fire neurons constitute a popular class of encoding models, in which spike times depend directly on the temporal structure of the inputs. However, optimal decoding rules for these models have only been studied explicitly in the noiseless case. Here, we study decoding rules for probabilistic inference of a continuous stimulus from the spike times of a population of leaky integrate-and-fire neurons with threshold noise. We derive three algorithms for approximating the posterior distribution over stimuli as a function of the observed spike trains. In addition to a reconstruction of the stimulus we thus obtain an estimate of the uncertainty as well. Furthermore, we derive a `spike-by-spike' online decoding scheme that recursively updates the posterior with the arrival of each new spike. We use these decoding rules to reconstruct time-varying stimuli represented by a Gaussian process from spike trains of single neurons as well as neural populations.

資料詳細

表示:
非表示:
言語: eng - English
 日付: 2009
 出版の状態: 出版
 ページ: -
 出版情報: -
 目次: -
 査読: -
 識別子(DOI, ISBNなど): DOI: 10.3389/neuro.10.021.2009
ISSN: 1662-5188
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: Frontiers in Computational Neuroscience
  出版物の別名 : Front. Comput. Neurosci.
種別: 学術雑誌
 著者・編者:
所属:
出版社, 出版地: -
ページ: - 巻号: 3 通巻号: - 開始・終了ページ: - 識別子(ISBN, ISSN, DOIなど): -