English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Back-propagating action potentials mediate calcium signalling in dendrites of bitufted interneurons in layer 2/3 of rat somatosensory cortex

Kaiser, K., Zilberter, Y., & Sakmann, B. (2001). Back-propagating action potentials mediate calcium signalling in dendrites of bitufted interneurons in layer 2/3 of rat somatosensory cortex. Journal of Physiology, 535(1), 17-31. doi:10.1111/j.1469-7793.2001.t01-1-00017.x.

Item is

Basic

show hide
Genre: Journal Article
Alternative Title : Back-propagating action potentials mediate calcium signalling in dendrites of bitufted interneurons in layer 2/3 of rat somatosensory cortex

Files

show Files
hide Files
:
JPhysiol_535_2001_17.pdf (Any fulltext), 2MB
 
File Permalink:
-
Name:
JPhysiol_535_2001_17.pdf
Description:
-
Visibility:
Restricted (Max Planck Institute for Medical Research, MHMF; )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Creators

show
hide
 Creators:
Kaiser, Katharina1, Author              
Zilberter, Yuri1, Author              
Sakmann, Bert1, Author              
Affiliations:
1Department of Cell Physiology, Max Planck Institute for Medical Research, Max Planck Society, ou_1497701              

Content

show
hide
Free keywords: -
 Abstract: 1. Bitufted interneurons in layer 2/3 of the rat (P14) somatosensory cortex have elongated apical and basal dendritic arbors that can span the entire depth of the cortex. Simultaneous dendritic and somatic whole-cell voltage recordings combined with Ca2+ fluorescence measurements were made to quantify voltage and Ca2+ signalling in dendritic arbors of bitufted neurons. 2. Action potentials (APs) initiated close to the soma by brief current injection back-propagated into the apical and basal dendritic arbors and evoked a transient increase in volume-averaged dendritic Ca2+ concentration (Delta[Ca(2+)](i)) of about 140 nM peak amplitude per AP. The AP evoked Ca2+ signal decayed with a time constant of about 200 ms. 3. A relatively high endogenous Ca(2+) binding ratio of approximately 285 determines the comparatively small rise in [Ca(2+)](i) of bitufted cell dendrites evoked by a back-propagating AP. 4. The [Ca(2+)](i) transient evoked by back-propagating dendritic APs decreased with distance (< or = 50 microm) from the soma in some neurons. At distances greater than 50 microm transients did not show a spatial gradient between the proximal and distal dendritic branches. 5. During trains of APs the mean amplitude of the steady-state increase in dendritic [Ca(2+)](i) encoded the AP frequency linearly up to 40 Hz with a slope of 20 nM Hz(-1). 6. The results suggest that APs initiated in the axon of bitufted neurons back-propagate and 'copy' the pattern of the axon's electrical activity also to the dendritic arbor. The AP pattern is transduced into a transient rise of dendritic [Ca(2+)](i) which, presumably, can regulate the receptive properties of the dendritic arbor for synaptic input. 7. Bitufted interneurons in layer 2/3 of the rat (P14) somatosensory cortex have elongated apical and basal dendritic arbors that can span the entire depth of the cortex. Simultaneous dendritic and somatic whole-cell voltage recordings combined with Ca2+ fluorescence measurements were made to quantify voltage and Ca2+ signalling in dendritic arbors of bitufted neurons. 8. Action potentials (APs) initiated close to the soma by brief current injection back-propagated into the apical and basal dendritic arbors and evoked a transient increase in volume-averaged dendritic Ca2+ concentration (Delta[Ca(2+)](i)) of about 140 nM peak amplitude per AP. The AP evoked Ca2+ signal decayed with a time constant of about 200 ms. 9. A relatively high endogenous Ca2+ binding ratio of approximately 285 determines the comparatively small rise in [Ca(2+)](i) of bitufted cell dendrites evoked by a back-propagating AP. 10. The [Ca(2+)](i) transient evoked by back-propagating dendritic APs decreased with distance (< or = 50 microm) from the soma in some neurons. At distances greater than 50 microm transients did not show a spatial gradient between the proximal and distal dendritic branches. 11. During trains of APs the mean amplitude of the steady-state increase in dendritic [Ca(2+)](i) encoded the AP frequency linearly up to 40 Hz with a slope of 20 nM Hz(-1). 12. The results suggest that APs initiated in the axon of bitufted neurons back-propagate and also 'copy' the pattern of the axon's electrical activity to the dendritic arbor. The AP pattern is transduced into a transient rise of dendritic [Ca(2+)](i) which, presumably, can regulate the receptive properties of the dendritic arbor for synaptic input.

Details

show
hide
Language(s): eng - English
 Dates: 2000-10-312001-03-232004-08-052001-08-15
 Publication Status: Published in print
 Pages: 15
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Physiology
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: London : Cambridge University Press
Pages: - Volume / Issue: 535 (1) Sequence Number: - Start / End Page: 17 - 31 Identifier: ISSN: 0022-3751
CoNE: https://pure.mpg.de/cone/journals/resource/954925334693