English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Compartmental models of rat cerebellar Purkinje cells based on simultaneous somatic and dendritic patch-clamp recordings

Roth, A., & Häusser, M. (2001). Compartmental models of rat cerebellar Purkinje cells based on simultaneous somatic and dendritic patch-clamp recordings. The Journal of Physiology - London, 535(2), 445-472. doi:10.1111/j.1469-7793.2001.00445.x.

Item is

Basic

show hide
Genre: Journal Article
Alternative Title : Compartmental models of rat cerebellar Purkinje cells based on simultaneous somatic and dendritic patch-clamp recordings

Files

show Files
hide Files
:
JPhysiol_535_2001_445.pdf (Any fulltext), 2MB
 
File Permalink:
-
Name:
JPhysiol_535_2001_445.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Medical Research, MHMF; )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Description:
-
OA-Status:
Description:
-
OA-Status:

Creators

show
hide
 Creators:
Roth, Arnd1, 2, 3, Author           
Häusser, Michael3, Author           
Affiliations:
1Synaptic Transmission MNTB, Max Planck Institute for Medical Research, Max Planck Society, ou_1497745              
2Cortical Circuits, Max Planck Institute for Medical Research, Max Planck Society, ou_1497694              
3Department of Cell Physiology, Max Planck Institute for Medical Research, Max Planck Society, ou_1497701              

Content

show
hide
Free keywords: -
 Abstract: 1. Simultaneous dendritic and somatic patch-clamp recordings were made from Purkinje cells in cerebellar slices from 12- to 21-day-old rats. Voltage responses to current impulses injected via either the dendritic or the somatic pipette were obtained in the presence of the selective I(h) blocker ZD 7288 and blockers of spontaneous synaptic input. Neurons were filled with biocytin for subsequent morphological reconstruction. 2. Four neurons were reconstructed and converted into detailed compartmental models. The specific membrane capacitance (C(m)), specific membrane resistance (R(m)) and intracellular resistivity (R(i)) were optimized by direct fitting of the model responses to the electrophysiological data from the same cell. Mean values were: C(m), 0.77 +/- 0.17 microF cm(-2) (mean +/- S.D.; range, 0.64-1.00 microF cm(-2)), R(m), 122 +/- 18 kOmega cm(2) (98-141 kOmega cm(2)) and R(i), 115 +/- 20 Omega cm (93-142 Omega cm). 3. The steady-state electrotonic architecture of these cells was compact under the experimental conditions used. However, somatic voltage-clamp recordings of parallel fibre and climbing fibre synaptic currents were substantially filtered and attenuated. 4. The detailed models were compared with a two-compartment model of Purkinje cells. The range of synaptic current kinetics that can be faithfully recorded using somatic voltage clamp is predicted fairly well by the two-compartment model, even though some of its underlying assumptions are violated. 5. A model of I(h) was constructed based on voltage-clamp data, and inserted into the passive compartmental models. Somatic EPSP amplitude was substantially attenuated compared to the amplitude of dendritic EPSPs at their site of generation. However, synaptic efficacy of the same quantal synaptic conductance, as measured by the somatic EPSP amplitude, was only weakly dependent on synaptic location on spiny branchlets. 6. The passive electrotonic structure of Purkinje cells is unusual in that the steady-state architecture is very compact, while voltage transients such as synaptic potentials and action potentials are heavily filtered.

Details

show
hide
Language(s): eng - English
 Dates: 2000-12-222001-04-192001-09-01
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: The Journal of Physiology - London
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: London : Cambridge University Press
Pages: - Volume / Issue: 535 (2) Sequence Number: - Start / End Page: 445 - 472 Identifier: ISSN: 0022-3751
CoNE: https://pure.mpg.de/cone/journals/resource/954925334693_2