Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Online Checkpointing with Improved Worst-case Guarantees

Bringmann, K., Doerr, B., Neumann, A., & Sliacan, J. (2015). Online Checkpointing with Improved Worst-case Guarantees. INFORMS Journal on Computing, 27(3), 478-490. doi:10.1287/ijoc.2014.0639.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Bringmann, Karl1, Autor                 
Doerr, Benjamin1, Autor           
Neumann, Adrian1, Autor           
Sliacan, Jakub1, Autor           
Affiliations:
1Algorithms and Complexity, MPI for Informatics, Max Planck Society, ou_24019              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: In the online checkpointing problem, the task is to continuously maintain a set of k checkpoints that allow to rewind an ongoing computation faster than by a full restart. The only operation allowed is to replace an old checkpoint by the current state. Our aim are checkpoint placement strategies that minimize rewinding cost, i.e., such that at all times T when requested to rewind to some time t ≤ T the number of computation steps that need to be redone to get to t from a checkpoint before t is as small as possible. In particular, we want that the closest checkpoint earlier than t is not further away from t than q_k times the ideal distance T / (k+1), where q_k is a small constant. Improving over earlier work showing 1 + 1/k ≤ q_k ≤ 2, we show that q_k can be chosen asymptotically less than 2. We present algorithms with asymptotic discrepancy q_k ≤ 1.59 + o(1) valid for all k and q_k ≤ \ln(4) + o(1) ≤ 1.39 + o(1) valid for k being a power of two. Experiments indicate the uniform bound p_k ≤ 1.7 for all k. For small k, we show how to use a linear programming approach to compute good checkpointing algorithms. This gives discrepancies of less than 1.55 for all k < 60. We prove the first lower bound that is asymptotically more than one, namely q_k ≥ 1.30 - o(1). We also show that optimal algorithms (yielding the infimum discrepancy) exist for all~k.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2015-07-312015
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1287/ijoc.2014.0639
BibTex Citekey: BringmannDoerrNeumannSliacan2015
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: INFORMS Journal on Computing
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Linthicum, MD : Institute for Operations Research and the Manageme
Seiten: - Band / Heft: 27 (3) Artikelnummer: - Start- / Endseite: 478 - 490 Identifikator: ISSN: 1091-9856
CoNE: https://pure.mpg.de/cone/journals/resource/954925609903