English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Model structure and parameter identification of soil organic matter models

Sierra, C., Malghani, S., & Mueller, M. (2015). Model structure and parameter identification of soil organic matter models. Soil Biology and Biochemistry, 90, 197-203. doi:10.1016/j.soilbio.2015.08.012.

Item is

Files

show Files
hide Files
:
BGC2342.pdf (Publisher version), 761KB
 
File Permalink:
-
Name:
BGC2342.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Biogeochemistry, MJBK; )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Sierra, Carlos1, Author           
Malghani, Saadatullah2, 3, Author           
Mueller, Markus4, Author           
Affiliations:
1Quantitative Ecosystem Ecology, Dr. C. Sierra, Department Biogeochemical Processes, Prof. S. E. Trumbore, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497777              
2IMPRS International Max Planck Research School for Global Biogeochemical Cycles, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497757              
3Molecular Biogeochemistry Group, Dr. G. Gleixner, Department Biogeochemical Processes, Prof. S. E. Trumbore, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497775              
4Department Biogeochemical Processes, Prof. S. E. Trumbore, Max Planck Institute for Biogeochemistry , Max Planck Society, ou_1497752              

Content

show
hide
Free keywords: -
 Abstract: Soil organic matter models with complex ecological mechanisms usually include a large number of parameters than simpler models that omit detailed processes. Finding parameter values for these complex models is challenging given the poor availability of comprehensive datasets that describe different processes. Depending on the type of data available, the estimation of parameters in complex models may lead to identifiability problems, i.e. obtaining different combinations of parameters that give equally good predictions in comparison with the observed data. In this manuscript, we explore the problem of identifiability in soil organic matter models, pointing out combinations of empirical data and model structure that can minimize identifiability issues. We found that only sets of up to 3 or 4 parameters may be uniquely identifiable, depending on the number of data constrains used for parameter identification. When only using data on soil respiration fluxes from soil incubations or mass loss from litter decay studies, up to 2 parameters can be uniquely identifiable independently on the model structure. For nonlinear microbial models, all parameters cannot be identified simultaneously with mass loss or respiration data, combined with additional constraints from isotopes. Parameter identifiability possess series challenges for proposing complex model structures in global soil carbon models given the limitation of comprehensive datasets at a global scale.

Details

show
hide
Language(s):
 Dates: 2015-08-052015-08-182015
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: Other: BGC2342
DOI: 10.1016/j.soilbio.2015.08.012
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Soil Biology and Biochemistry
  Other : Soil Biol. Biochem.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Amsterdam [u.a.] : Elsevier
Pages: - Volume / Issue: 90 Sequence Number: - Start / End Page: 197 - 203 Identifier: ISSN: 0038-0717
CoNE: https://pure.mpg.de/cone/journals/resource/954925445690