English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Early cosmic ray irradiation of chondrules and prolonged accretion of primitive meteorites

Beyersdorf-Kuis, U., Ott, U., & Trieloff, M. (2015). Early cosmic ray irradiation of chondrules and prolonged accretion of primitive meteorites. Earth and Planetary Science Letters, 423, 13-23. doi:10.1016/j.epsl.2015.04.024.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Beyersdorf-Kuis , Uta1, Author
Ott, Ulrich2, Author           
Trieloff, Mario1, Author
Affiliations:
1external, ou_persistent22              
2Biogeochemistry, Max Planck Institute for Chemistry, Max Planck Society, ou_1826286              

Content

show
hide
Free keywords: -
 Abstract: Chondrules, together with Ca-Al-rich inclusions (CAIs) and matrix, are the major constituents of primitive meteorites. It is clear that chondrules formed as molten objects and the conditions under which this happened seem well constrained. Partially overlapping in age, but mostly similar to 2-3 million years younger than the CAIs, they appear to have formed over an extended period of time (e.g., Kita et al., 2013). We have analyzed chondrules in two highly primitive CR3 meteorites, QUE 99177 and MET 00426, and find that they contain highly variable amounts of noble gases produced by irradiation with cosmic rays. The lack of implanted solar wind and the composition of the cosmogenic component in QUE 99177 chondrules argue against irradiation in a parent body regolith, which leaves irradiation in the early solar system as the most likely explanation. The cosmogenic composition also points to irradiation primarily by galactic cosmic rays (GCR), not solar cosmic rays (SCR), i.e. not by an active early sun. To allow effective production of cosmogenic isotopes by GCR, but not SCR, this should have happened rather "late" in a largely, but not completely, dust-free environment. Our results support the suggestion that chondrules formed as free-floating objects in the solar nebula; also consistent with the noble gas data is pre-irradiation in small (similar to dm-size) aggregates that broke up before or during accretion to the CR parent body. In both cases, chondrules spent an extended period of time before incorporation into the most primitive meteorite parent bodies, which puts constraints on accretion time scales. (C) 2015 Elsevier B.V. All rights reserved.

Details

show
hide
Language(s):
 Dates: 2015
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Earth and Planetary Science Letters
  Other : Earth Planet. Sci. Lett.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Amsterdam : Elsevier
Pages: - Volume / Issue: 423 Sequence Number: - Start / End Page: 13 - 23 Identifier: ISSN: 0012-821X
CoNE: https://pure.mpg.de/cone/journals/resource/954925395406